03. Newton's Law of Cooling and Seebeck Effect
Heat Transfer

149628 Two hot bodies $B_{1}$ and $B_{2}$ have temperatures $100{ }^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively time $t=0$. The temperature of the surrounding is $40{ }^{\circ} \mathrm{C}$. The ratio of the respective rates of cooling $R_{1}$ and $R_{\mathbf{2}}$ of the these two bodies at $t=0$ is:

1 $\mathrm{R}_{1}: \mathrm{R}_{2}=3: 2$
2 $\mathrm{R}_{1}: \mathrm{R}_{2}=5: 4$
3 $\mathrm{R}_{1}: \mathrm{R}_{2}=2: 3$
4 $\mathrm{R}_{1}: \mathrm{R}_{2}=4: 5$
Heat Transfer

149629 In Newton's cooling experiment, the water equivalent of two similar calorimeters is $10 \mathrm{~g}$ each. They are filled with $350 \mathrm{~g}$ of water and $300 \mathrm{~g}$ of a liquid (equal volumes) separately. The times taken by water and the liquid to cool from $70{ }^{\circ} \mathrm{C}$ to $60{ }^{\circ} \mathrm{C}$ are $3 \mathrm{~min}$ and $95 \mathrm{sec}$ respectively. Then find the specific heat of the liquid.

1 $0.3 \mathrm{cal} . \mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
2 $0.5 \mathrm{cal} . \mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
3 0.6 cal. $\mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
4 $0.8 \mathrm{cal} \cdot \mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
Heat Transfer

149630 A body takes 10 minutes to cool from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. The temperature of same body after next 10 minutes will be of surroundings is $\mathbf{2 5}^{\circ} \mathrm{C}$ ) (If the temperature

1 $40^{\circ} \mathrm{C}$
2 $48^{\circ} \mathrm{C}$
3 $43^{\circ} \mathrm{C}$
4 $45.5^{\circ} \mathrm{X}$
Heat Transfer

149631 When a meter rod made of silver at $0^{\circ} \mathrm{C}$ is heated to $100{ }^{\circ} \mathrm{C}$, its length increased by 0.19 cm. Then find the coefficient of volume expansion of the silver.

1 $0.63 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
2 $1.9 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
3 $5.7 \times 10^{-5} \mathrm{C}^{-1}$
4 $16.1 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
Heat Transfer

149632 A pan filled with hot food cools from $94^{\circ} \mathrm{C}$ to $86^{\circ} \mathrm{C}$ in 2 minutes. When the room temperature is at $20^{\circ} \mathrm{C}$, the time taken to $\operatorname{cool}$ from $71^{\circ} \mathrm{C}$ to $69^{\circ} \mathrm{C}$ is.

1 $50 \mathrm{sec}$
2 $40 \mathrm{sec}$
3 $38 \mathrm{sec}$
4 $42 \mathrm{sec}$
Heat Transfer

149628 Two hot bodies $B_{1}$ and $B_{2}$ have temperatures $100{ }^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively time $t=0$. The temperature of the surrounding is $40{ }^{\circ} \mathrm{C}$. The ratio of the respective rates of cooling $R_{1}$ and $R_{\mathbf{2}}$ of the these two bodies at $t=0$ is:

1 $\mathrm{R}_{1}: \mathrm{R}_{2}=3: 2$
2 $\mathrm{R}_{1}: \mathrm{R}_{2}=5: 4$
3 $\mathrm{R}_{1}: \mathrm{R}_{2}=2: 3$
4 $\mathrm{R}_{1}: \mathrm{R}_{2}=4: 5$
Heat Transfer

149629 In Newton's cooling experiment, the water equivalent of two similar calorimeters is $10 \mathrm{~g}$ each. They are filled with $350 \mathrm{~g}$ of water and $300 \mathrm{~g}$ of a liquid (equal volumes) separately. The times taken by water and the liquid to cool from $70{ }^{\circ} \mathrm{C}$ to $60{ }^{\circ} \mathrm{C}$ are $3 \mathrm{~min}$ and $95 \mathrm{sec}$ respectively. Then find the specific heat of the liquid.

1 $0.3 \mathrm{cal} . \mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
2 $0.5 \mathrm{cal} . \mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
3 0.6 cal. $\mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
4 $0.8 \mathrm{cal} \cdot \mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
Heat Transfer

149630 A body takes 10 minutes to cool from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. The temperature of same body after next 10 minutes will be of surroundings is $\mathbf{2 5}^{\circ} \mathrm{C}$ ) (If the temperature

1 $40^{\circ} \mathrm{C}$
2 $48^{\circ} \mathrm{C}$
3 $43^{\circ} \mathrm{C}$
4 $45.5^{\circ} \mathrm{X}$
Heat Transfer

149631 When a meter rod made of silver at $0^{\circ} \mathrm{C}$ is heated to $100{ }^{\circ} \mathrm{C}$, its length increased by 0.19 cm. Then find the coefficient of volume expansion of the silver.

1 $0.63 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
2 $1.9 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
3 $5.7 \times 10^{-5} \mathrm{C}^{-1}$
4 $16.1 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
Heat Transfer

149632 A pan filled with hot food cools from $94^{\circ} \mathrm{C}$ to $86^{\circ} \mathrm{C}$ in 2 minutes. When the room temperature is at $20^{\circ} \mathrm{C}$, the time taken to $\operatorname{cool}$ from $71^{\circ} \mathrm{C}$ to $69^{\circ} \mathrm{C}$ is.

1 $50 \mathrm{sec}$
2 $40 \mathrm{sec}$
3 $38 \mathrm{sec}$
4 $42 \mathrm{sec}$
Heat Transfer

149628 Two hot bodies $B_{1}$ and $B_{2}$ have temperatures $100{ }^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively time $t=0$. The temperature of the surrounding is $40{ }^{\circ} \mathrm{C}$. The ratio of the respective rates of cooling $R_{1}$ and $R_{\mathbf{2}}$ of the these two bodies at $t=0$ is:

1 $\mathrm{R}_{1}: \mathrm{R}_{2}=3: 2$
2 $\mathrm{R}_{1}: \mathrm{R}_{2}=5: 4$
3 $\mathrm{R}_{1}: \mathrm{R}_{2}=2: 3$
4 $\mathrm{R}_{1}: \mathrm{R}_{2}=4: 5$
Heat Transfer

149629 In Newton's cooling experiment, the water equivalent of two similar calorimeters is $10 \mathrm{~g}$ each. They are filled with $350 \mathrm{~g}$ of water and $300 \mathrm{~g}$ of a liquid (equal volumes) separately. The times taken by water and the liquid to cool from $70{ }^{\circ} \mathrm{C}$ to $60{ }^{\circ} \mathrm{C}$ are $3 \mathrm{~min}$ and $95 \mathrm{sec}$ respectively. Then find the specific heat of the liquid.

1 $0.3 \mathrm{cal} . \mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
2 $0.5 \mathrm{cal} . \mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
3 0.6 cal. $\mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
4 $0.8 \mathrm{cal} \cdot \mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
Heat Transfer

149630 A body takes 10 minutes to cool from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. The temperature of same body after next 10 minutes will be of surroundings is $\mathbf{2 5}^{\circ} \mathrm{C}$ ) (If the temperature

1 $40^{\circ} \mathrm{C}$
2 $48^{\circ} \mathrm{C}$
3 $43^{\circ} \mathrm{C}$
4 $45.5^{\circ} \mathrm{X}$
Heat Transfer

149631 When a meter rod made of silver at $0^{\circ} \mathrm{C}$ is heated to $100{ }^{\circ} \mathrm{C}$, its length increased by 0.19 cm. Then find the coefficient of volume expansion of the silver.

1 $0.63 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
2 $1.9 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
3 $5.7 \times 10^{-5} \mathrm{C}^{-1}$
4 $16.1 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
Heat Transfer

149632 A pan filled with hot food cools from $94^{\circ} \mathrm{C}$ to $86^{\circ} \mathrm{C}$ in 2 minutes. When the room temperature is at $20^{\circ} \mathrm{C}$, the time taken to $\operatorname{cool}$ from $71^{\circ} \mathrm{C}$ to $69^{\circ} \mathrm{C}$ is.

1 $50 \mathrm{sec}$
2 $40 \mathrm{sec}$
3 $38 \mathrm{sec}$
4 $42 \mathrm{sec}$
Heat Transfer

149628 Two hot bodies $B_{1}$ and $B_{2}$ have temperatures $100{ }^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively time $t=0$. The temperature of the surrounding is $40{ }^{\circ} \mathrm{C}$. The ratio of the respective rates of cooling $R_{1}$ and $R_{\mathbf{2}}$ of the these two bodies at $t=0$ is:

1 $\mathrm{R}_{1}: \mathrm{R}_{2}=3: 2$
2 $\mathrm{R}_{1}: \mathrm{R}_{2}=5: 4$
3 $\mathrm{R}_{1}: \mathrm{R}_{2}=2: 3$
4 $\mathrm{R}_{1}: \mathrm{R}_{2}=4: 5$
Heat Transfer

149629 In Newton's cooling experiment, the water equivalent of two similar calorimeters is $10 \mathrm{~g}$ each. They are filled with $350 \mathrm{~g}$ of water and $300 \mathrm{~g}$ of a liquid (equal volumes) separately. The times taken by water and the liquid to cool from $70{ }^{\circ} \mathrm{C}$ to $60{ }^{\circ} \mathrm{C}$ are $3 \mathrm{~min}$ and $95 \mathrm{sec}$ respectively. Then find the specific heat of the liquid.

1 $0.3 \mathrm{cal} . \mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
2 $0.5 \mathrm{cal} . \mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
3 0.6 cal. $\mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
4 $0.8 \mathrm{cal} \cdot \mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
Heat Transfer

149630 A body takes 10 minutes to cool from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. The temperature of same body after next 10 minutes will be of surroundings is $\mathbf{2 5}^{\circ} \mathrm{C}$ ) (If the temperature

1 $40^{\circ} \mathrm{C}$
2 $48^{\circ} \mathrm{C}$
3 $43^{\circ} \mathrm{C}$
4 $45.5^{\circ} \mathrm{X}$
Heat Transfer

149631 When a meter rod made of silver at $0^{\circ} \mathrm{C}$ is heated to $100{ }^{\circ} \mathrm{C}$, its length increased by 0.19 cm. Then find the coefficient of volume expansion of the silver.

1 $0.63 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
2 $1.9 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
3 $5.7 \times 10^{-5} \mathrm{C}^{-1}$
4 $16.1 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
Heat Transfer

149632 A pan filled with hot food cools from $94^{\circ} \mathrm{C}$ to $86^{\circ} \mathrm{C}$ in 2 minutes. When the room temperature is at $20^{\circ} \mathrm{C}$, the time taken to $\operatorname{cool}$ from $71^{\circ} \mathrm{C}$ to $69^{\circ} \mathrm{C}$ is.

1 $50 \mathrm{sec}$
2 $40 \mathrm{sec}$
3 $38 \mathrm{sec}$
4 $42 \mathrm{sec}$
Heat Transfer

149628 Two hot bodies $B_{1}$ and $B_{2}$ have temperatures $100{ }^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively time $t=0$. The temperature of the surrounding is $40{ }^{\circ} \mathrm{C}$. The ratio of the respective rates of cooling $R_{1}$ and $R_{\mathbf{2}}$ of the these two bodies at $t=0$ is:

1 $\mathrm{R}_{1}: \mathrm{R}_{2}=3: 2$
2 $\mathrm{R}_{1}: \mathrm{R}_{2}=5: 4$
3 $\mathrm{R}_{1}: \mathrm{R}_{2}=2: 3$
4 $\mathrm{R}_{1}: \mathrm{R}_{2}=4: 5$
Heat Transfer

149629 In Newton's cooling experiment, the water equivalent of two similar calorimeters is $10 \mathrm{~g}$ each. They are filled with $350 \mathrm{~g}$ of water and $300 \mathrm{~g}$ of a liquid (equal volumes) separately. The times taken by water and the liquid to cool from $70{ }^{\circ} \mathrm{C}$ to $60{ }^{\circ} \mathrm{C}$ are $3 \mathrm{~min}$ and $95 \mathrm{sec}$ respectively. Then find the specific heat of the liquid.

1 $0.3 \mathrm{cal} . \mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
2 $0.5 \mathrm{cal} . \mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
3 0.6 cal. $\mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
4 $0.8 \mathrm{cal} \cdot \mathrm{g}^{-1},{ }^{\circ} \mathrm{C}^{-1}$
Heat Transfer

149630 A body takes 10 minutes to cool from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. The temperature of same body after next 10 minutes will be of surroundings is $\mathbf{2 5}^{\circ} \mathrm{C}$ ) (If the temperature

1 $40^{\circ} \mathrm{C}$
2 $48^{\circ} \mathrm{C}$
3 $43^{\circ} \mathrm{C}$
4 $45.5^{\circ} \mathrm{X}$
Heat Transfer

149631 When a meter rod made of silver at $0^{\circ} \mathrm{C}$ is heated to $100{ }^{\circ} \mathrm{C}$, its length increased by 0.19 cm. Then find the coefficient of volume expansion of the silver.

1 $0.63 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
2 $1.9 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
3 $5.7 \times 10^{-5} \mathrm{C}^{-1}$
4 $16.1 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$
Heat Transfer

149632 A pan filled with hot food cools from $94^{\circ} \mathrm{C}$ to $86^{\circ} \mathrm{C}$ in 2 minutes. When the room temperature is at $20^{\circ} \mathrm{C}$, the time taken to $\operatorname{cool}$ from $71^{\circ} \mathrm{C}$ to $69^{\circ} \mathrm{C}$ is.

1 $50 \mathrm{sec}$
2 $40 \mathrm{sec}$
3 $38 \mathrm{sec}$
4 $42 \mathrm{sec}$