02. Radiation
Heat Transfer

149577 Two spheres of the same material have radii 1 $\mathrm{m}$ and $4 \mathrm{~m}$ and temperatures $4000 \mathrm{~K}$ and 2000 $K$ respectively. The ratio of energy radiated per second by the first sphere to the second is

1 $1: 1$
2 $16: 1$
3 $4: 1$
4 $1: 9$
Heat Transfer

149578 Stars $S_{1}$ and $S_{2}$ emit maximum energy at wavelengths $5000 \AA$ and $50 \mu \mathrm{m}$, respectively. The surface temperature of $S_{1}$ is $6000 \mathrm{~K}$. Find the surface temperature of $S_{2}$

1 $90 \mathrm{~K}$
2 $80 \mathrm{~K}$
3 $70 \mathrm{~K}$
4 $60 \mathrm{~K}$
Heat Transfer

149579 The following figure shows the Maxwell's speed distribution plots at four different temperatures $T_{1}, T_{2}, T_{3}$ and $T_{4}$

Which of the following gives the correct relation between temperatures?

1 $\mathrm{T}_{4}>\mathrm{T}_{3}>\mathrm{T}_{2}>\mathrm{T}_{1}$
2 $\mathrm{T}_{4} \lt \mathrm{T}_{3} \lt \mathrm{T}_{2} \lt \mathrm{T}_{1}$
3 $\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}=\mathrm{T}_{4}$
4 $\mathrm{T}_{1}>\mathrm{T}_{2}, \mathrm{~T}_{3} \lt \mathrm{T}_{4}$
Heat Transfer

149580 $5 \%$ of the Power of $200 \mathrm{~W}$ bulb is converted into visible radiation. The average intensity of visible radiation at a distance of $1 \mathrm{~m}$ from the bulb is

1 $0.5 \mathrm{~W} / \mathrm{m}^{2}$
2 $0.8 \mathrm{~W} / \mathrm{m}^{2}$
3 $0.4 \mathrm{~W} / \mathrm{m}^{2}$
4 $2 \mathrm{~W} / \mathrm{m}^{2}$
Heat Transfer

149577 Two spheres of the same material have radii 1 $\mathrm{m}$ and $4 \mathrm{~m}$ and temperatures $4000 \mathrm{~K}$ and 2000 $K$ respectively. The ratio of energy radiated per second by the first sphere to the second is

1 $1: 1$
2 $16: 1$
3 $4: 1$
4 $1: 9$
Heat Transfer

149578 Stars $S_{1}$ and $S_{2}$ emit maximum energy at wavelengths $5000 \AA$ and $50 \mu \mathrm{m}$, respectively. The surface temperature of $S_{1}$ is $6000 \mathrm{~K}$. Find the surface temperature of $S_{2}$

1 $90 \mathrm{~K}$
2 $80 \mathrm{~K}$
3 $70 \mathrm{~K}$
4 $60 \mathrm{~K}$
Heat Transfer

149579 The following figure shows the Maxwell's speed distribution plots at four different temperatures $T_{1}, T_{2}, T_{3}$ and $T_{4}$

Which of the following gives the correct relation between temperatures?

1 $\mathrm{T}_{4}>\mathrm{T}_{3}>\mathrm{T}_{2}>\mathrm{T}_{1}$
2 $\mathrm{T}_{4} \lt \mathrm{T}_{3} \lt \mathrm{T}_{2} \lt \mathrm{T}_{1}$
3 $\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}=\mathrm{T}_{4}$
4 $\mathrm{T}_{1}>\mathrm{T}_{2}, \mathrm{~T}_{3} \lt \mathrm{T}_{4}$
Heat Transfer

149580 $5 \%$ of the Power of $200 \mathrm{~W}$ bulb is converted into visible radiation. The average intensity of visible radiation at a distance of $1 \mathrm{~m}$ from the bulb is

1 $0.5 \mathrm{~W} / \mathrm{m}^{2}$
2 $0.8 \mathrm{~W} / \mathrm{m}^{2}$
3 $0.4 \mathrm{~W} / \mathrm{m}^{2}$
4 $2 \mathrm{~W} / \mathrm{m}^{2}$
Heat Transfer

149577 Two spheres of the same material have radii 1 $\mathrm{m}$ and $4 \mathrm{~m}$ and temperatures $4000 \mathrm{~K}$ and 2000 $K$ respectively. The ratio of energy radiated per second by the first sphere to the second is

1 $1: 1$
2 $16: 1$
3 $4: 1$
4 $1: 9$
Heat Transfer

149578 Stars $S_{1}$ and $S_{2}$ emit maximum energy at wavelengths $5000 \AA$ and $50 \mu \mathrm{m}$, respectively. The surface temperature of $S_{1}$ is $6000 \mathrm{~K}$. Find the surface temperature of $S_{2}$

1 $90 \mathrm{~K}$
2 $80 \mathrm{~K}$
3 $70 \mathrm{~K}$
4 $60 \mathrm{~K}$
Heat Transfer

149579 The following figure shows the Maxwell's speed distribution plots at four different temperatures $T_{1}, T_{2}, T_{3}$ and $T_{4}$

Which of the following gives the correct relation between temperatures?

1 $\mathrm{T}_{4}>\mathrm{T}_{3}>\mathrm{T}_{2}>\mathrm{T}_{1}$
2 $\mathrm{T}_{4} \lt \mathrm{T}_{3} \lt \mathrm{T}_{2} \lt \mathrm{T}_{1}$
3 $\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}=\mathrm{T}_{4}$
4 $\mathrm{T}_{1}>\mathrm{T}_{2}, \mathrm{~T}_{3} \lt \mathrm{T}_{4}$
Heat Transfer

149580 $5 \%$ of the Power of $200 \mathrm{~W}$ bulb is converted into visible radiation. The average intensity of visible radiation at a distance of $1 \mathrm{~m}$ from the bulb is

1 $0.5 \mathrm{~W} / \mathrm{m}^{2}$
2 $0.8 \mathrm{~W} / \mathrm{m}^{2}$
3 $0.4 \mathrm{~W} / \mathrm{m}^{2}$
4 $2 \mathrm{~W} / \mathrm{m}^{2}$
Heat Transfer

149577 Two spheres of the same material have radii 1 $\mathrm{m}$ and $4 \mathrm{~m}$ and temperatures $4000 \mathrm{~K}$ and 2000 $K$ respectively. The ratio of energy radiated per second by the first sphere to the second is

1 $1: 1$
2 $16: 1$
3 $4: 1$
4 $1: 9$
Heat Transfer

149578 Stars $S_{1}$ and $S_{2}$ emit maximum energy at wavelengths $5000 \AA$ and $50 \mu \mathrm{m}$, respectively. The surface temperature of $S_{1}$ is $6000 \mathrm{~K}$. Find the surface temperature of $S_{2}$

1 $90 \mathrm{~K}$
2 $80 \mathrm{~K}$
3 $70 \mathrm{~K}$
4 $60 \mathrm{~K}$
Heat Transfer

149579 The following figure shows the Maxwell's speed distribution plots at four different temperatures $T_{1}, T_{2}, T_{3}$ and $T_{4}$

Which of the following gives the correct relation between temperatures?

1 $\mathrm{T}_{4}>\mathrm{T}_{3}>\mathrm{T}_{2}>\mathrm{T}_{1}$
2 $\mathrm{T}_{4} \lt \mathrm{T}_{3} \lt \mathrm{T}_{2} \lt \mathrm{T}_{1}$
3 $\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}=\mathrm{T}_{4}$
4 $\mathrm{T}_{1}>\mathrm{T}_{2}, \mathrm{~T}_{3} \lt \mathrm{T}_{4}$
Heat Transfer

149580 $5 \%$ of the Power of $200 \mathrm{~W}$ bulb is converted into visible radiation. The average intensity of visible radiation at a distance of $1 \mathrm{~m}$ from the bulb is

1 $0.5 \mathrm{~W} / \mathrm{m}^{2}$
2 $0.8 \mathrm{~W} / \mathrm{m}^{2}$
3 $0.4 \mathrm{~W} / \mathrm{m}^{2}$
4 $2 \mathrm{~W} / \mathrm{m}^{2}$