02. Radiation
Heat Transfer

149565 A spherical black body of radius $12 \mathrm{~cm}$ radiates $450 \mathrm{~W}$ power at $500 \mathrm{~K}$. If the radius is one half and the temperature doubled, the power radiated in watt will be

1 225
2 450
3 900
4 1800
Heat Transfer

149566 Sun gives light at the rate of $1400 \mathrm{Wm}^{-2}$ of the area perpendicular to the direction of the light. Assume $\lambda$ (sunlight) $=6000 \AA$. Calculate the number of protons/sec arriving at $1 \mathrm{~m}^{2}$ area at that part of the earth

1 $1.22 \times 10^{23}$
2 $4.22 \times 10^{21}$
3 $2.00 \times 10^{21}$
4 $7.83 \times 10^{23}$
SRM JEE-2018]
Heat Transfer

149569 At $127^{0} \mathrm{C}$, radiated energy is $2.7 \times 10^{-3} \mathrm{~J} / \mathrm{s}$. At what temperature radiated energy is $4.32 \times 10^{6} \mathrm{~J} / \mathrm{s}$.

1 $400 \mathrm{~K}$
2 $4000 \mathrm{~K}$
3 $80000 \mathrm{~K}$
4 $40000 \mathrm{~K}$
Heat Transfer

149570 The wavelength of maximum energy, released during an atomic explosion was $2.93 \times 10^{-10} \mathrm{~m}$. Given that the Wien's constant is $2.93 \times 10^{-3} \mathrm{~m}-\mathrm{K}$ the maximum temperature attained must be of the order of :

1 $10^{-7} \mathrm{~K}$
2 $10^{7} \mathrm{~K}$
3 $10^{-3} \mathrm{~K}$
4 $5.86 \times 10^{7} \mathrm{~K}$
Heat Transfer

149571 The surface of a black body is at a temperature $727^{\circ} \mathrm{C}$ and its cross section is $1 \mathrm{~m}^{2}$. Heat radiated from this surface in one minute in Joules is (Stefan's constant $=5.7 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-}$ 4)

1 $34.2 \times 10^{5}$
2 $2.5 \times 10^{5}$
3 $3.42 \times 10^{5}$
4 $2.5 \times 10^{6}$
Heat Transfer

149565 A spherical black body of radius $12 \mathrm{~cm}$ radiates $450 \mathrm{~W}$ power at $500 \mathrm{~K}$. If the radius is one half and the temperature doubled, the power radiated in watt will be

1 225
2 450
3 900
4 1800
Heat Transfer

149566 Sun gives light at the rate of $1400 \mathrm{Wm}^{-2}$ of the area perpendicular to the direction of the light. Assume $\lambda$ (sunlight) $=6000 \AA$. Calculate the number of protons/sec arriving at $1 \mathrm{~m}^{2}$ area at that part of the earth

1 $1.22 \times 10^{23}$
2 $4.22 \times 10^{21}$
3 $2.00 \times 10^{21}$
4 $7.83 \times 10^{23}$
SRM JEE-2018]
Heat Transfer

149569 At $127^{0} \mathrm{C}$, radiated energy is $2.7 \times 10^{-3} \mathrm{~J} / \mathrm{s}$. At what temperature radiated energy is $4.32 \times 10^{6} \mathrm{~J} / \mathrm{s}$.

1 $400 \mathrm{~K}$
2 $4000 \mathrm{~K}$
3 $80000 \mathrm{~K}$
4 $40000 \mathrm{~K}$
Heat Transfer

149570 The wavelength of maximum energy, released during an atomic explosion was $2.93 \times 10^{-10} \mathrm{~m}$. Given that the Wien's constant is $2.93 \times 10^{-3} \mathrm{~m}-\mathrm{K}$ the maximum temperature attained must be of the order of :

1 $10^{-7} \mathrm{~K}$
2 $10^{7} \mathrm{~K}$
3 $10^{-3} \mathrm{~K}$
4 $5.86 \times 10^{7} \mathrm{~K}$
Heat Transfer

149571 The surface of a black body is at a temperature $727^{\circ} \mathrm{C}$ and its cross section is $1 \mathrm{~m}^{2}$. Heat radiated from this surface in one minute in Joules is (Stefan's constant $=5.7 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-}$ 4)

1 $34.2 \times 10^{5}$
2 $2.5 \times 10^{5}$
3 $3.42 \times 10^{5}$
4 $2.5 \times 10^{6}$
Heat Transfer

149565 A spherical black body of radius $12 \mathrm{~cm}$ radiates $450 \mathrm{~W}$ power at $500 \mathrm{~K}$. If the radius is one half and the temperature doubled, the power radiated in watt will be

1 225
2 450
3 900
4 1800
Heat Transfer

149566 Sun gives light at the rate of $1400 \mathrm{Wm}^{-2}$ of the area perpendicular to the direction of the light. Assume $\lambda$ (sunlight) $=6000 \AA$. Calculate the number of protons/sec arriving at $1 \mathrm{~m}^{2}$ area at that part of the earth

1 $1.22 \times 10^{23}$
2 $4.22 \times 10^{21}$
3 $2.00 \times 10^{21}$
4 $7.83 \times 10^{23}$
SRM JEE-2018]
Heat Transfer

149569 At $127^{0} \mathrm{C}$, radiated energy is $2.7 \times 10^{-3} \mathrm{~J} / \mathrm{s}$. At what temperature radiated energy is $4.32 \times 10^{6} \mathrm{~J} / \mathrm{s}$.

1 $400 \mathrm{~K}$
2 $4000 \mathrm{~K}$
3 $80000 \mathrm{~K}$
4 $40000 \mathrm{~K}$
Heat Transfer

149570 The wavelength of maximum energy, released during an atomic explosion was $2.93 \times 10^{-10} \mathrm{~m}$. Given that the Wien's constant is $2.93 \times 10^{-3} \mathrm{~m}-\mathrm{K}$ the maximum temperature attained must be of the order of :

1 $10^{-7} \mathrm{~K}$
2 $10^{7} \mathrm{~K}$
3 $10^{-3} \mathrm{~K}$
4 $5.86 \times 10^{7} \mathrm{~K}$
Heat Transfer

149571 The surface of a black body is at a temperature $727^{\circ} \mathrm{C}$ and its cross section is $1 \mathrm{~m}^{2}$. Heat radiated from this surface in one minute in Joules is (Stefan's constant $=5.7 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-}$ 4)

1 $34.2 \times 10^{5}$
2 $2.5 \times 10^{5}$
3 $3.42 \times 10^{5}$
4 $2.5 \times 10^{6}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Heat Transfer

149565 A spherical black body of radius $12 \mathrm{~cm}$ radiates $450 \mathrm{~W}$ power at $500 \mathrm{~K}$. If the radius is one half and the temperature doubled, the power radiated in watt will be

1 225
2 450
3 900
4 1800
Heat Transfer

149566 Sun gives light at the rate of $1400 \mathrm{Wm}^{-2}$ of the area perpendicular to the direction of the light. Assume $\lambda$ (sunlight) $=6000 \AA$. Calculate the number of protons/sec arriving at $1 \mathrm{~m}^{2}$ area at that part of the earth

1 $1.22 \times 10^{23}$
2 $4.22 \times 10^{21}$
3 $2.00 \times 10^{21}$
4 $7.83 \times 10^{23}$
SRM JEE-2018]
Heat Transfer

149569 At $127^{0} \mathrm{C}$, radiated energy is $2.7 \times 10^{-3} \mathrm{~J} / \mathrm{s}$. At what temperature radiated energy is $4.32 \times 10^{6} \mathrm{~J} / \mathrm{s}$.

1 $400 \mathrm{~K}$
2 $4000 \mathrm{~K}$
3 $80000 \mathrm{~K}$
4 $40000 \mathrm{~K}$
Heat Transfer

149570 The wavelength of maximum energy, released during an atomic explosion was $2.93 \times 10^{-10} \mathrm{~m}$. Given that the Wien's constant is $2.93 \times 10^{-3} \mathrm{~m}-\mathrm{K}$ the maximum temperature attained must be of the order of :

1 $10^{-7} \mathrm{~K}$
2 $10^{7} \mathrm{~K}$
3 $10^{-3} \mathrm{~K}$
4 $5.86 \times 10^{7} \mathrm{~K}$
Heat Transfer

149571 The surface of a black body is at a temperature $727^{\circ} \mathrm{C}$ and its cross section is $1 \mathrm{~m}^{2}$. Heat radiated from this surface in one minute in Joules is (Stefan's constant $=5.7 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-}$ 4)

1 $34.2 \times 10^{5}$
2 $2.5 \times 10^{5}$
3 $3.42 \times 10^{5}$
4 $2.5 \times 10^{6}$
Heat Transfer

149565 A spherical black body of radius $12 \mathrm{~cm}$ radiates $450 \mathrm{~W}$ power at $500 \mathrm{~K}$. If the radius is one half and the temperature doubled, the power radiated in watt will be

1 225
2 450
3 900
4 1800
Heat Transfer

149566 Sun gives light at the rate of $1400 \mathrm{Wm}^{-2}$ of the area perpendicular to the direction of the light. Assume $\lambda$ (sunlight) $=6000 \AA$. Calculate the number of protons/sec arriving at $1 \mathrm{~m}^{2}$ area at that part of the earth

1 $1.22 \times 10^{23}$
2 $4.22 \times 10^{21}$
3 $2.00 \times 10^{21}$
4 $7.83 \times 10^{23}$
SRM JEE-2018]
Heat Transfer

149569 At $127^{0} \mathrm{C}$, radiated energy is $2.7 \times 10^{-3} \mathrm{~J} / \mathrm{s}$. At what temperature radiated energy is $4.32 \times 10^{6} \mathrm{~J} / \mathrm{s}$.

1 $400 \mathrm{~K}$
2 $4000 \mathrm{~K}$
3 $80000 \mathrm{~K}$
4 $40000 \mathrm{~K}$
Heat Transfer

149570 The wavelength of maximum energy, released during an atomic explosion was $2.93 \times 10^{-10} \mathrm{~m}$. Given that the Wien's constant is $2.93 \times 10^{-3} \mathrm{~m}-\mathrm{K}$ the maximum temperature attained must be of the order of :

1 $10^{-7} \mathrm{~K}$
2 $10^{7} \mathrm{~K}$
3 $10^{-3} \mathrm{~K}$
4 $5.86 \times 10^{7} \mathrm{~K}$
Heat Transfer

149571 The surface of a black body is at a temperature $727^{\circ} \mathrm{C}$ and its cross section is $1 \mathrm{~m}^{2}$. Heat radiated from this surface in one minute in Joules is (Stefan's constant $=5.7 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-}$ 4)

1 $34.2 \times 10^{5}$
2 $2.5 \times 10^{5}$
3 $3.42 \times 10^{5}$
4 $2.5 \times 10^{6}$