02. Radiation
Heat Transfer

149561 A pulse of radiation is absorbed by an object initially at rest for $10^{-4} \mathrm{~s}$. If the power of the pulse is $9 \times 10^{-3} \mathrm{~W}$. then the total momentum of the object received is (Speed of light in vacuum $=3 \times 10^{8} \mathrm{~ms}^{-1}$ )

1 $3 \times 10^{8} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
2 $3 \times 10^{8} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
3 $3 \times 10^{-15} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
4 $3 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Heat Transfer

149562 The earth receives solar radiation at a rate of $8.2 \mathrm{Jcm}^{-2} \mathrm{~min}^{-1}$. If the sun radiates as the black bodies, the temperature at the surface of the sun will be (the angle subtended by sun on the earth is $0.53^{\circ}$ and Stefan constant is $\sigma=5.67 \times$ $10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{4}$ )

1 $5800 \mathrm{~K}$
2 $6700 \mathrm{~K}$
3 $8000 \mathrm{~K}$
4 $7800 \mathrm{~K}$
Heat Transfer

149563 Power radiated by a black body at temperature $T_{1}$ is $P$ and it radiates maximum energy at a wavelength $\lambda_{1}$. If the temperature of the black body is changed from $T_{1}$ to $T_{2}$, it radiates maximum energy at a wavelength $\lambda_{1} / 2$. The power radiated at $T_{2}$ is

1 $2 \mathrm{P}$
2 $4 \mathrm{P}$
3 $8 \mathrm{P}$
4 $16 \mathrm{P}$
Heat Transfer

149564 A black body at a high temperature $T$ radiates energy at the rate of $U$ (in $W / \mathrm{m}^{2}$ ). When the temperature falls to half (i.e. $T / 2$ ), the radiated energy (in $W / \mathrm{m}^{2}$ ) will be

1 $\frac{U}{8}$
2 $\frac{U}{16}$
3 $\frac{U}{4}$
4 $\frac{U}{2}$
Heat Transfer

149561 A pulse of radiation is absorbed by an object initially at rest for $10^{-4} \mathrm{~s}$. If the power of the pulse is $9 \times 10^{-3} \mathrm{~W}$. then the total momentum of the object received is (Speed of light in vacuum $=3 \times 10^{8} \mathrm{~ms}^{-1}$ )

1 $3 \times 10^{8} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
2 $3 \times 10^{8} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
3 $3 \times 10^{-15} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
4 $3 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Heat Transfer

149562 The earth receives solar radiation at a rate of $8.2 \mathrm{Jcm}^{-2} \mathrm{~min}^{-1}$. If the sun radiates as the black bodies, the temperature at the surface of the sun will be (the angle subtended by sun on the earth is $0.53^{\circ}$ and Stefan constant is $\sigma=5.67 \times$ $10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{4}$ )

1 $5800 \mathrm{~K}$
2 $6700 \mathrm{~K}$
3 $8000 \mathrm{~K}$
4 $7800 \mathrm{~K}$
Heat Transfer

149563 Power radiated by a black body at temperature $T_{1}$ is $P$ and it radiates maximum energy at a wavelength $\lambda_{1}$. If the temperature of the black body is changed from $T_{1}$ to $T_{2}$, it radiates maximum energy at a wavelength $\lambda_{1} / 2$. The power radiated at $T_{2}$ is

1 $2 \mathrm{P}$
2 $4 \mathrm{P}$
3 $8 \mathrm{P}$
4 $16 \mathrm{P}$
Heat Transfer

149564 A black body at a high temperature $T$ radiates energy at the rate of $U$ (in $W / \mathrm{m}^{2}$ ). When the temperature falls to half (i.e. $T / 2$ ), the radiated energy (in $W / \mathrm{m}^{2}$ ) will be

1 $\frac{U}{8}$
2 $\frac{U}{16}$
3 $\frac{U}{4}$
4 $\frac{U}{2}$
Heat Transfer

149561 A pulse of radiation is absorbed by an object initially at rest for $10^{-4} \mathrm{~s}$. If the power of the pulse is $9 \times 10^{-3} \mathrm{~W}$. then the total momentum of the object received is (Speed of light in vacuum $=3 \times 10^{8} \mathrm{~ms}^{-1}$ )

1 $3 \times 10^{8} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
2 $3 \times 10^{8} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
3 $3 \times 10^{-15} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
4 $3 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Heat Transfer

149562 The earth receives solar radiation at a rate of $8.2 \mathrm{Jcm}^{-2} \mathrm{~min}^{-1}$. If the sun radiates as the black bodies, the temperature at the surface of the sun will be (the angle subtended by sun on the earth is $0.53^{\circ}$ and Stefan constant is $\sigma=5.67 \times$ $10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{4}$ )

1 $5800 \mathrm{~K}$
2 $6700 \mathrm{~K}$
3 $8000 \mathrm{~K}$
4 $7800 \mathrm{~K}$
Heat Transfer

149563 Power radiated by a black body at temperature $T_{1}$ is $P$ and it radiates maximum energy at a wavelength $\lambda_{1}$. If the temperature of the black body is changed from $T_{1}$ to $T_{2}$, it radiates maximum energy at a wavelength $\lambda_{1} / 2$. The power radiated at $T_{2}$ is

1 $2 \mathrm{P}$
2 $4 \mathrm{P}$
3 $8 \mathrm{P}$
4 $16 \mathrm{P}$
Heat Transfer

149564 A black body at a high temperature $T$ radiates energy at the rate of $U$ (in $W / \mathrm{m}^{2}$ ). When the temperature falls to half (i.e. $T / 2$ ), the radiated energy (in $W / \mathrm{m}^{2}$ ) will be

1 $\frac{U}{8}$
2 $\frac{U}{16}$
3 $\frac{U}{4}$
4 $\frac{U}{2}$
Heat Transfer

149561 A pulse of radiation is absorbed by an object initially at rest for $10^{-4} \mathrm{~s}$. If the power of the pulse is $9 \times 10^{-3} \mathrm{~W}$. then the total momentum of the object received is (Speed of light in vacuum $=3 \times 10^{8} \mathrm{~ms}^{-1}$ )

1 $3 \times 10^{8} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
2 $3 \times 10^{8} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
3 $3 \times 10^{-15} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
4 $3 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
Heat Transfer

149562 The earth receives solar radiation at a rate of $8.2 \mathrm{Jcm}^{-2} \mathrm{~min}^{-1}$. If the sun radiates as the black bodies, the temperature at the surface of the sun will be (the angle subtended by sun on the earth is $0.53^{\circ}$ and Stefan constant is $\sigma=5.67 \times$ $10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{4}$ )

1 $5800 \mathrm{~K}$
2 $6700 \mathrm{~K}$
3 $8000 \mathrm{~K}$
4 $7800 \mathrm{~K}$
Heat Transfer

149563 Power radiated by a black body at temperature $T_{1}$ is $P$ and it radiates maximum energy at a wavelength $\lambda_{1}$. If the temperature of the black body is changed from $T_{1}$ to $T_{2}$, it radiates maximum energy at a wavelength $\lambda_{1} / 2$. The power radiated at $T_{2}$ is

1 $2 \mathrm{P}$
2 $4 \mathrm{P}$
3 $8 \mathrm{P}$
4 $16 \mathrm{P}$
Heat Transfer

149564 A black body at a high temperature $T$ radiates energy at the rate of $U$ (in $W / \mathrm{m}^{2}$ ). When the temperature falls to half (i.e. $T / 2$ ), the radiated energy (in $W / \mathrm{m}^{2}$ ) will be

1 $\frac{U}{8}$
2 $\frac{U}{16}$
3 $\frac{U}{4}$
4 $\frac{U}{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here