02. Radiation
Heat Transfer

149524 The S.I unit and dimensions of Stefan's constant ' $\sigma$ ' in case of Stefan's law of radiation is

1 $\mathrm{J} / \mathrm{m}^{2} \mathrm{~s}^{4} \mathrm{~K}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{3}$
2 $\mathrm{J} / \mathrm{m}^{3} \mathrm{sK}^{4}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{4}$
3 $\mathrm{J} / \mathrm{m}^{3} \mathrm{~s}^{4}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{-4}$
4 $\mathrm{J} / \mathrm{m}^{2} \mathrm{sK}^{4}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{-4}$
Heat Transfer

149525 Heat energy is incident on the surface at the rate of $1000 \mathrm{~J} / \mathrm{min}$. If coefficient of absorption is 0.8 and coefficient of reflection is 0.1 then heat energy transmitted by the surface in 5 minute in

1 $100 \mathrm{~J}$
2 $500 \mathrm{~J}$
3 $700 \mathrm{~J}$
4 $900 \mathrm{~J}$
Heat Transfer

149526 A black body radiates heat at temperatures ' $T_{1}$ ' and ' $T_{2}, \quad\left(T_{2}>T_{1}\right)$. The frequency corresponding to maximum energy is

1 more at $T_{1}$
2 more at $T_{2}$
3 equal for $T_{1}$ and $T_{2}$
4 independent of $T_{1}$ and $T_{2}$
Heat Transfer

149527 If $150 \mathrm{~J}$ of energy is incident on area $2 \mathrm{~m}^{2}$. If $Q_{\mathrm{r}}$ $=15 \mathrm{~J}$, coefficient of absorption is 0.6 , then amount of energy transmitted is

1 $50 \mathrm{~J}$
2 $45 \mathrm{~J}$
3 $40 \mathrm{~J}$
4 $30 \mathrm{~J}$
Heat Transfer

149529 Two stars $A$ and $B$ radiate maximum energy at the wavelength of $360 \mathrm{~nm}$ and $480 \mathrm{~nm}$ respectively. Then the ratio of the surface temperatures of $A$ and $B$ is :

1 $3: 4$
2 $81: 256$
3 $4: 3$
4 $256: 81$
Heat Transfer

149524 The S.I unit and dimensions of Stefan's constant ' $\sigma$ ' in case of Stefan's law of radiation is

1 $\mathrm{J} / \mathrm{m}^{2} \mathrm{~s}^{4} \mathrm{~K}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{3}$
2 $\mathrm{J} / \mathrm{m}^{3} \mathrm{sK}^{4}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{4}$
3 $\mathrm{J} / \mathrm{m}^{3} \mathrm{~s}^{4}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{-4}$
4 $\mathrm{J} / \mathrm{m}^{2} \mathrm{sK}^{4}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{-4}$
Heat Transfer

149525 Heat energy is incident on the surface at the rate of $1000 \mathrm{~J} / \mathrm{min}$. If coefficient of absorption is 0.8 and coefficient of reflection is 0.1 then heat energy transmitted by the surface in 5 minute in

1 $100 \mathrm{~J}$
2 $500 \mathrm{~J}$
3 $700 \mathrm{~J}$
4 $900 \mathrm{~J}$
Heat Transfer

149526 A black body radiates heat at temperatures ' $T_{1}$ ' and ' $T_{2}, \quad\left(T_{2}>T_{1}\right)$. The frequency corresponding to maximum energy is

1 more at $T_{1}$
2 more at $T_{2}$
3 equal for $T_{1}$ and $T_{2}$
4 independent of $T_{1}$ and $T_{2}$
Heat Transfer

149527 If $150 \mathrm{~J}$ of energy is incident on area $2 \mathrm{~m}^{2}$. If $Q_{\mathrm{r}}$ $=15 \mathrm{~J}$, coefficient of absorption is 0.6 , then amount of energy transmitted is

1 $50 \mathrm{~J}$
2 $45 \mathrm{~J}$
3 $40 \mathrm{~J}$
4 $30 \mathrm{~J}$
Heat Transfer

149529 Two stars $A$ and $B$ radiate maximum energy at the wavelength of $360 \mathrm{~nm}$ and $480 \mathrm{~nm}$ respectively. Then the ratio of the surface temperatures of $A$ and $B$ is :

1 $3: 4$
2 $81: 256$
3 $4: 3$
4 $256: 81$
Heat Transfer

149524 The S.I unit and dimensions of Stefan's constant ' $\sigma$ ' in case of Stefan's law of radiation is

1 $\mathrm{J} / \mathrm{m}^{2} \mathrm{~s}^{4} \mathrm{~K}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{3}$
2 $\mathrm{J} / \mathrm{m}^{3} \mathrm{sK}^{4}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{4}$
3 $\mathrm{J} / \mathrm{m}^{3} \mathrm{~s}^{4}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{-4}$
4 $\mathrm{J} / \mathrm{m}^{2} \mathrm{sK}^{4}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{-4}$
Heat Transfer

149525 Heat energy is incident on the surface at the rate of $1000 \mathrm{~J} / \mathrm{min}$. If coefficient of absorption is 0.8 and coefficient of reflection is 0.1 then heat energy transmitted by the surface in 5 minute in

1 $100 \mathrm{~J}$
2 $500 \mathrm{~J}$
3 $700 \mathrm{~J}$
4 $900 \mathrm{~J}$
Heat Transfer

149526 A black body radiates heat at temperatures ' $T_{1}$ ' and ' $T_{2}, \quad\left(T_{2}>T_{1}\right)$. The frequency corresponding to maximum energy is

1 more at $T_{1}$
2 more at $T_{2}$
3 equal for $T_{1}$ and $T_{2}$
4 independent of $T_{1}$ and $T_{2}$
Heat Transfer

149527 If $150 \mathrm{~J}$ of energy is incident on area $2 \mathrm{~m}^{2}$. If $Q_{\mathrm{r}}$ $=15 \mathrm{~J}$, coefficient of absorption is 0.6 , then amount of energy transmitted is

1 $50 \mathrm{~J}$
2 $45 \mathrm{~J}$
3 $40 \mathrm{~J}$
4 $30 \mathrm{~J}$
Heat Transfer

149529 Two stars $A$ and $B$ radiate maximum energy at the wavelength of $360 \mathrm{~nm}$ and $480 \mathrm{~nm}$ respectively. Then the ratio of the surface temperatures of $A$ and $B$ is :

1 $3: 4$
2 $81: 256$
3 $4: 3$
4 $256: 81$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Heat Transfer

149524 The S.I unit and dimensions of Stefan's constant ' $\sigma$ ' in case of Stefan's law of radiation is

1 $\mathrm{J} / \mathrm{m}^{2} \mathrm{~s}^{4} \mathrm{~K}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{3}$
2 $\mathrm{J} / \mathrm{m}^{3} \mathrm{sK}^{4}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{4}$
3 $\mathrm{J} / \mathrm{m}^{3} \mathrm{~s}^{4}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{-4}$
4 $\mathrm{J} / \mathrm{m}^{2} \mathrm{sK}^{4}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{-4}$
Heat Transfer

149525 Heat energy is incident on the surface at the rate of $1000 \mathrm{~J} / \mathrm{min}$. If coefficient of absorption is 0.8 and coefficient of reflection is 0.1 then heat energy transmitted by the surface in 5 minute in

1 $100 \mathrm{~J}$
2 $500 \mathrm{~J}$
3 $700 \mathrm{~J}$
4 $900 \mathrm{~J}$
Heat Transfer

149526 A black body radiates heat at temperatures ' $T_{1}$ ' and ' $T_{2}, \quad\left(T_{2}>T_{1}\right)$. The frequency corresponding to maximum energy is

1 more at $T_{1}$
2 more at $T_{2}$
3 equal for $T_{1}$ and $T_{2}$
4 independent of $T_{1}$ and $T_{2}$
Heat Transfer

149527 If $150 \mathrm{~J}$ of energy is incident on area $2 \mathrm{~m}^{2}$. If $Q_{\mathrm{r}}$ $=15 \mathrm{~J}$, coefficient of absorption is 0.6 , then amount of energy transmitted is

1 $50 \mathrm{~J}$
2 $45 \mathrm{~J}$
3 $40 \mathrm{~J}$
4 $30 \mathrm{~J}$
Heat Transfer

149529 Two stars $A$ and $B$ radiate maximum energy at the wavelength of $360 \mathrm{~nm}$ and $480 \mathrm{~nm}$ respectively. Then the ratio of the surface temperatures of $A$ and $B$ is :

1 $3: 4$
2 $81: 256$
3 $4: 3$
4 $256: 81$
Heat Transfer

149524 The S.I unit and dimensions of Stefan's constant ' $\sigma$ ' in case of Stefan's law of radiation is

1 $\mathrm{J} / \mathrm{m}^{2} \mathrm{~s}^{4} \mathrm{~K}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{3}$
2 $\mathrm{J} / \mathrm{m}^{3} \mathrm{sK}^{4}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{4}$
3 $\mathrm{J} / \mathrm{m}^{3} \mathrm{~s}^{4}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{-4}$
4 $\mathrm{J} / \mathrm{m}^{2} \mathrm{sK}^{4}, \mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3} \mathrm{~K}^{-4}$
Heat Transfer

149525 Heat energy is incident on the surface at the rate of $1000 \mathrm{~J} / \mathrm{min}$. If coefficient of absorption is 0.8 and coefficient of reflection is 0.1 then heat energy transmitted by the surface in 5 minute in

1 $100 \mathrm{~J}$
2 $500 \mathrm{~J}$
3 $700 \mathrm{~J}$
4 $900 \mathrm{~J}$
Heat Transfer

149526 A black body radiates heat at temperatures ' $T_{1}$ ' and ' $T_{2}, \quad\left(T_{2}>T_{1}\right)$. The frequency corresponding to maximum energy is

1 more at $T_{1}$
2 more at $T_{2}$
3 equal for $T_{1}$ and $T_{2}$
4 independent of $T_{1}$ and $T_{2}$
Heat Transfer

149527 If $150 \mathrm{~J}$ of energy is incident on area $2 \mathrm{~m}^{2}$. If $Q_{\mathrm{r}}$ $=15 \mathrm{~J}$, coefficient of absorption is 0.6 , then amount of energy transmitted is

1 $50 \mathrm{~J}$
2 $45 \mathrm{~J}$
3 $40 \mathrm{~J}$
4 $30 \mathrm{~J}$
Heat Transfer

149529 Two stars $A$ and $B$ radiate maximum energy at the wavelength of $360 \mathrm{~nm}$ and $480 \mathrm{~nm}$ respectively. Then the ratio of the surface temperatures of $A$ and $B$ is :

1 $3: 4$
2 $81: 256$
3 $4: 3$
4 $256: 81$