02. Radiation
Heat Transfer

149505 There discs 1,2 and 3 having radii $2 \mathrm{~m}, 4 \mathrm{~m}$ and 6m respectively, are coated with carbon black on their outer surfaces. The wavelengths corresponding to maximum intensity are $300 \mathrm{~nm}, 400 \mathrm{~nm}$ and $500 \mathrm{~nm}$ respectively. The power radiated by them is $Q_{1}, Q_{2}$, and $Q_{3}$ respectively. Then which one is true?

1 $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}$
2 $Q_{2}$ is $\max$
3 $\mathrm{Q}_{1}$ is $\max$
4 $\mathrm{Q}_{3}$ is $\max$
Heat Transfer

149506 If the emissive power of black surface at same temperature is $400 \mathrm{~W} / \mathrm{m}^{2}$, the emissive and absorptive powers of the surface assuming it was initially ordinary surface, are
(Given, Mass of the body $\mathrm{m}=4.2 \mathrm{~kg}$, area of body $=5 \times 10^{-2} \mathrm{~m}^{2}$,
rate of cooling $\frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{1}{12} \times 10^{-2} \mathrm{C} / \mathrm{min}$,
specific heat $s=420 \mathrm{~J} / \mathrm{kg}^{0} \mathrm{C}$ )

1 $\mathrm{e}=\mathrm{a}=0.0735$
2 $\mathrm{e}=\mathrm{a}=0.0435$
3 $\mathrm{e}=\mathrm{a}=0.0535$
4 $\mathrm{e}=\mathrm{a}=0.0235$
Heat Transfer

149507 A spherical black body with a radius of $12 \mathrm{~cm}$ radiates $450 \mathrm{~W}$ power at $500 \mathrm{~K}$. If the radius were halved and temperature be doubled, the power radiated in watt would be-

1 1800
2 900
3 3600
4 850
Heat Transfer

149508 At $127^{0} \mathrm{C}$ radiated energy is $2.7 \times 10^{-3} \mathrm{~J} / \mathrm{s}$. At what temperature radiated energy is $4.32 \times 10^{6} \mathrm{~J} / \mathrm{s} ?$

1 $400 \mathrm{~K}$
2 $4000 \mathrm{~K}$
3 $80000 \mathrm{~K}$
4 $40000 \mathrm{~K}$
Heat Transfer

149510 A black rectangular surface of area $A$ emits energy $E$ per second at $27^{\circ} \mathrm{C}$. If length and breadth is reduced to $\left(\frac{1}{3}\right)^{\text {rd }}$ of initial value and temperature is raised to $327^{\circ} \mathrm{C}$ then energy emitted per second becomes

1 $\frac{4 \mathrm{E}}{9}$
2 $\frac{E}{9}$
3 $\frac{16 \mathrm{E}}{9}$
4 $\frac{2 \mathrm{E}}{9}$
Heat Transfer

149505 There discs 1,2 and 3 having radii $2 \mathrm{~m}, 4 \mathrm{~m}$ and 6m respectively, are coated with carbon black on their outer surfaces. The wavelengths corresponding to maximum intensity are $300 \mathrm{~nm}, 400 \mathrm{~nm}$ and $500 \mathrm{~nm}$ respectively. The power radiated by them is $Q_{1}, Q_{2}$, and $Q_{3}$ respectively. Then which one is true?

1 $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}$
2 $Q_{2}$ is $\max$
3 $\mathrm{Q}_{1}$ is $\max$
4 $\mathrm{Q}_{3}$ is $\max$
Heat Transfer

149506 If the emissive power of black surface at same temperature is $400 \mathrm{~W} / \mathrm{m}^{2}$, the emissive and absorptive powers of the surface assuming it was initially ordinary surface, are
(Given, Mass of the body $\mathrm{m}=4.2 \mathrm{~kg}$, area of body $=5 \times 10^{-2} \mathrm{~m}^{2}$,
rate of cooling $\frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{1}{12} \times 10^{-2} \mathrm{C} / \mathrm{min}$,
specific heat $s=420 \mathrm{~J} / \mathrm{kg}^{0} \mathrm{C}$ )

1 $\mathrm{e}=\mathrm{a}=0.0735$
2 $\mathrm{e}=\mathrm{a}=0.0435$
3 $\mathrm{e}=\mathrm{a}=0.0535$
4 $\mathrm{e}=\mathrm{a}=0.0235$
Heat Transfer

149507 A spherical black body with a radius of $12 \mathrm{~cm}$ radiates $450 \mathrm{~W}$ power at $500 \mathrm{~K}$. If the radius were halved and temperature be doubled, the power radiated in watt would be-

1 1800
2 900
3 3600
4 850
Heat Transfer

149508 At $127^{0} \mathrm{C}$ radiated energy is $2.7 \times 10^{-3} \mathrm{~J} / \mathrm{s}$. At what temperature radiated energy is $4.32 \times 10^{6} \mathrm{~J} / \mathrm{s} ?$

1 $400 \mathrm{~K}$
2 $4000 \mathrm{~K}$
3 $80000 \mathrm{~K}$
4 $40000 \mathrm{~K}$
Heat Transfer

149510 A black rectangular surface of area $A$ emits energy $E$ per second at $27^{\circ} \mathrm{C}$. If length and breadth is reduced to $\left(\frac{1}{3}\right)^{\text {rd }}$ of initial value and temperature is raised to $327^{\circ} \mathrm{C}$ then energy emitted per second becomes

1 $\frac{4 \mathrm{E}}{9}$
2 $\frac{E}{9}$
3 $\frac{16 \mathrm{E}}{9}$
4 $\frac{2 \mathrm{E}}{9}$
Heat Transfer

149505 There discs 1,2 and 3 having radii $2 \mathrm{~m}, 4 \mathrm{~m}$ and 6m respectively, are coated with carbon black on their outer surfaces. The wavelengths corresponding to maximum intensity are $300 \mathrm{~nm}, 400 \mathrm{~nm}$ and $500 \mathrm{~nm}$ respectively. The power radiated by them is $Q_{1}, Q_{2}$, and $Q_{3}$ respectively. Then which one is true?

1 $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}$
2 $Q_{2}$ is $\max$
3 $\mathrm{Q}_{1}$ is $\max$
4 $\mathrm{Q}_{3}$ is $\max$
Heat Transfer

149506 If the emissive power of black surface at same temperature is $400 \mathrm{~W} / \mathrm{m}^{2}$, the emissive and absorptive powers of the surface assuming it was initially ordinary surface, are
(Given, Mass of the body $\mathrm{m}=4.2 \mathrm{~kg}$, area of body $=5 \times 10^{-2} \mathrm{~m}^{2}$,
rate of cooling $\frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{1}{12} \times 10^{-2} \mathrm{C} / \mathrm{min}$,
specific heat $s=420 \mathrm{~J} / \mathrm{kg}^{0} \mathrm{C}$ )

1 $\mathrm{e}=\mathrm{a}=0.0735$
2 $\mathrm{e}=\mathrm{a}=0.0435$
3 $\mathrm{e}=\mathrm{a}=0.0535$
4 $\mathrm{e}=\mathrm{a}=0.0235$
Heat Transfer

149507 A spherical black body with a radius of $12 \mathrm{~cm}$ radiates $450 \mathrm{~W}$ power at $500 \mathrm{~K}$. If the radius were halved and temperature be doubled, the power radiated in watt would be-

1 1800
2 900
3 3600
4 850
Heat Transfer

149508 At $127^{0} \mathrm{C}$ radiated energy is $2.7 \times 10^{-3} \mathrm{~J} / \mathrm{s}$. At what temperature radiated energy is $4.32 \times 10^{6} \mathrm{~J} / \mathrm{s} ?$

1 $400 \mathrm{~K}$
2 $4000 \mathrm{~K}$
3 $80000 \mathrm{~K}$
4 $40000 \mathrm{~K}$
Heat Transfer

149510 A black rectangular surface of area $A$ emits energy $E$ per second at $27^{\circ} \mathrm{C}$. If length and breadth is reduced to $\left(\frac{1}{3}\right)^{\text {rd }}$ of initial value and temperature is raised to $327^{\circ} \mathrm{C}$ then energy emitted per second becomes

1 $\frac{4 \mathrm{E}}{9}$
2 $\frac{E}{9}$
3 $\frac{16 \mathrm{E}}{9}$
4 $\frac{2 \mathrm{E}}{9}$
Heat Transfer

149505 There discs 1,2 and 3 having radii $2 \mathrm{~m}, 4 \mathrm{~m}$ and 6m respectively, are coated with carbon black on their outer surfaces. The wavelengths corresponding to maximum intensity are $300 \mathrm{~nm}, 400 \mathrm{~nm}$ and $500 \mathrm{~nm}$ respectively. The power radiated by them is $Q_{1}, Q_{2}$, and $Q_{3}$ respectively. Then which one is true?

1 $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}$
2 $Q_{2}$ is $\max$
3 $\mathrm{Q}_{1}$ is $\max$
4 $\mathrm{Q}_{3}$ is $\max$
Heat Transfer

149506 If the emissive power of black surface at same temperature is $400 \mathrm{~W} / \mathrm{m}^{2}$, the emissive and absorptive powers of the surface assuming it was initially ordinary surface, are
(Given, Mass of the body $\mathrm{m}=4.2 \mathrm{~kg}$, area of body $=5 \times 10^{-2} \mathrm{~m}^{2}$,
rate of cooling $\frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{1}{12} \times 10^{-2} \mathrm{C} / \mathrm{min}$,
specific heat $s=420 \mathrm{~J} / \mathrm{kg}^{0} \mathrm{C}$ )

1 $\mathrm{e}=\mathrm{a}=0.0735$
2 $\mathrm{e}=\mathrm{a}=0.0435$
3 $\mathrm{e}=\mathrm{a}=0.0535$
4 $\mathrm{e}=\mathrm{a}=0.0235$
Heat Transfer

149507 A spherical black body with a radius of $12 \mathrm{~cm}$ radiates $450 \mathrm{~W}$ power at $500 \mathrm{~K}$. If the radius were halved and temperature be doubled, the power radiated in watt would be-

1 1800
2 900
3 3600
4 850
Heat Transfer

149508 At $127^{0} \mathrm{C}$ radiated energy is $2.7 \times 10^{-3} \mathrm{~J} / \mathrm{s}$. At what temperature radiated energy is $4.32 \times 10^{6} \mathrm{~J} / \mathrm{s} ?$

1 $400 \mathrm{~K}$
2 $4000 \mathrm{~K}$
3 $80000 \mathrm{~K}$
4 $40000 \mathrm{~K}$
Heat Transfer

149510 A black rectangular surface of area $A$ emits energy $E$ per second at $27^{\circ} \mathrm{C}$. If length and breadth is reduced to $\left(\frac{1}{3}\right)^{\text {rd }}$ of initial value and temperature is raised to $327^{\circ} \mathrm{C}$ then energy emitted per second becomes

1 $\frac{4 \mathrm{E}}{9}$
2 $\frac{E}{9}$
3 $\frac{16 \mathrm{E}}{9}$
4 $\frac{2 \mathrm{E}}{9}$
Heat Transfer

149505 There discs 1,2 and 3 having radii $2 \mathrm{~m}, 4 \mathrm{~m}$ and 6m respectively, are coated with carbon black on their outer surfaces. The wavelengths corresponding to maximum intensity are $300 \mathrm{~nm}, 400 \mathrm{~nm}$ and $500 \mathrm{~nm}$ respectively. The power radiated by them is $Q_{1}, Q_{2}$, and $Q_{3}$ respectively. Then which one is true?

1 $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}$
2 $Q_{2}$ is $\max$
3 $\mathrm{Q}_{1}$ is $\max$
4 $\mathrm{Q}_{3}$ is $\max$
Heat Transfer

149506 If the emissive power of black surface at same temperature is $400 \mathrm{~W} / \mathrm{m}^{2}$, the emissive and absorptive powers of the surface assuming it was initially ordinary surface, are
(Given, Mass of the body $\mathrm{m}=4.2 \mathrm{~kg}$, area of body $=5 \times 10^{-2} \mathrm{~m}^{2}$,
rate of cooling $\frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{1}{12} \times 10^{-2} \mathrm{C} / \mathrm{min}$,
specific heat $s=420 \mathrm{~J} / \mathrm{kg}^{0} \mathrm{C}$ )

1 $\mathrm{e}=\mathrm{a}=0.0735$
2 $\mathrm{e}=\mathrm{a}=0.0435$
3 $\mathrm{e}=\mathrm{a}=0.0535$
4 $\mathrm{e}=\mathrm{a}=0.0235$
Heat Transfer

149507 A spherical black body with a radius of $12 \mathrm{~cm}$ radiates $450 \mathrm{~W}$ power at $500 \mathrm{~K}$. If the radius were halved and temperature be doubled, the power radiated in watt would be-

1 1800
2 900
3 3600
4 850
Heat Transfer

149508 At $127^{0} \mathrm{C}$ radiated energy is $2.7 \times 10^{-3} \mathrm{~J} / \mathrm{s}$. At what temperature radiated energy is $4.32 \times 10^{6} \mathrm{~J} / \mathrm{s} ?$

1 $400 \mathrm{~K}$
2 $4000 \mathrm{~K}$
3 $80000 \mathrm{~K}$
4 $40000 \mathrm{~K}$
Heat Transfer

149510 A black rectangular surface of area $A$ emits energy $E$ per second at $27^{\circ} \mathrm{C}$. If length and breadth is reduced to $\left(\frac{1}{3}\right)^{\text {rd }}$ of initial value and temperature is raised to $327^{\circ} \mathrm{C}$ then energy emitted per second becomes

1 $\frac{4 \mathrm{E}}{9}$
2 $\frac{E}{9}$
3 $\frac{16 \mathrm{E}}{9}$
4 $\frac{2 \mathrm{E}}{9}$