02. Radiation
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Heat Transfer

149500 A black body is heated from $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$. The ratio of their energies of radiation emitted will be:

1 $9: 16$
2 $27: 64$
3 $81: 256$
4 3:4
Heat Transfer

149502 Calculate radiation power for sphere whose temperature is $227^{\circ} \mathrm{C}$ and radius $0.2 \mathrm{~m}$ and emissivity 0.8 .

1 $1425 \mathrm{~W}$
2 $1500 \mathrm{~W}$
3 $1255 \mathrm{~W}$
4 $1575 \mathrm{~W}$
Heat Transfer

149503 Distance between sun and earth is $2 \times 10^{8} \mathrm{~km}$, temperature of sun $6000 \mathrm{~K}$, radius of sun $7 \times 10^{5}$ $\mathrm{km}$. If emissivity of earth is 0.6 , then find out temperature of earth in thermal equilibrium.

1 $400 \mathrm{~K}$
2 $300 \mathrm{~K}$
3 $500 \mathrm{~K}$
4 $600 \mathrm{~K}$
Heat Transfer

149504 If a body coated black at $600 \mathrm{~K}$ surrounded by atmosphere at $300 \mathrm{~K}$ has cooling rate $r_{0}$, the same body at $900 \mathrm{~K}$, surrounded by the same atmosphere will have cooling rate equal to-

1 $\frac{16}{3} r_{0}$
2 $\frac{8}{16} r_{0}$
3 $16 r_{0}$
4 $4 \mathrm{r}_{0}$
Heat Transfer

149500 A black body is heated from $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$. The ratio of their energies of radiation emitted will be:

1 $9: 16$
2 $27: 64$
3 $81: 256$
4 3:4
Heat Transfer

149502 Calculate radiation power for sphere whose temperature is $227^{\circ} \mathrm{C}$ and radius $0.2 \mathrm{~m}$ and emissivity 0.8 .

1 $1425 \mathrm{~W}$
2 $1500 \mathrm{~W}$
3 $1255 \mathrm{~W}$
4 $1575 \mathrm{~W}$
Heat Transfer

149503 Distance between sun and earth is $2 \times 10^{8} \mathrm{~km}$, temperature of sun $6000 \mathrm{~K}$, radius of sun $7 \times 10^{5}$ $\mathrm{km}$. If emissivity of earth is 0.6 , then find out temperature of earth in thermal equilibrium.

1 $400 \mathrm{~K}$
2 $300 \mathrm{~K}$
3 $500 \mathrm{~K}$
4 $600 \mathrm{~K}$
Heat Transfer

149504 If a body coated black at $600 \mathrm{~K}$ surrounded by atmosphere at $300 \mathrm{~K}$ has cooling rate $r_{0}$, the same body at $900 \mathrm{~K}$, surrounded by the same atmosphere will have cooling rate equal to-

1 $\frac{16}{3} r_{0}$
2 $\frac{8}{16} r_{0}$
3 $16 r_{0}$
4 $4 \mathrm{r}_{0}$
Heat Transfer

149500 A black body is heated from $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$. The ratio of their energies of radiation emitted will be:

1 $9: 16$
2 $27: 64$
3 $81: 256$
4 3:4
Heat Transfer

149502 Calculate radiation power for sphere whose temperature is $227^{\circ} \mathrm{C}$ and radius $0.2 \mathrm{~m}$ and emissivity 0.8 .

1 $1425 \mathrm{~W}$
2 $1500 \mathrm{~W}$
3 $1255 \mathrm{~W}$
4 $1575 \mathrm{~W}$
Heat Transfer

149503 Distance between sun and earth is $2 \times 10^{8} \mathrm{~km}$, temperature of sun $6000 \mathrm{~K}$, radius of sun $7 \times 10^{5}$ $\mathrm{km}$. If emissivity of earth is 0.6 , then find out temperature of earth in thermal equilibrium.

1 $400 \mathrm{~K}$
2 $300 \mathrm{~K}$
3 $500 \mathrm{~K}$
4 $600 \mathrm{~K}$
Heat Transfer

149504 If a body coated black at $600 \mathrm{~K}$ surrounded by atmosphere at $300 \mathrm{~K}$ has cooling rate $r_{0}$, the same body at $900 \mathrm{~K}$, surrounded by the same atmosphere will have cooling rate equal to-

1 $\frac{16}{3} r_{0}$
2 $\frac{8}{16} r_{0}$
3 $16 r_{0}$
4 $4 \mathrm{r}_{0}$
Heat Transfer

149500 A black body is heated from $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$. The ratio of their energies of radiation emitted will be:

1 $9: 16$
2 $27: 64$
3 $81: 256$
4 3:4
Heat Transfer

149502 Calculate radiation power for sphere whose temperature is $227^{\circ} \mathrm{C}$ and radius $0.2 \mathrm{~m}$ and emissivity 0.8 .

1 $1425 \mathrm{~W}$
2 $1500 \mathrm{~W}$
3 $1255 \mathrm{~W}$
4 $1575 \mathrm{~W}$
Heat Transfer

149503 Distance between sun and earth is $2 \times 10^{8} \mathrm{~km}$, temperature of sun $6000 \mathrm{~K}$, radius of sun $7 \times 10^{5}$ $\mathrm{km}$. If emissivity of earth is 0.6 , then find out temperature of earth in thermal equilibrium.

1 $400 \mathrm{~K}$
2 $300 \mathrm{~K}$
3 $500 \mathrm{~K}$
4 $600 \mathrm{~K}$
Heat Transfer

149504 If a body coated black at $600 \mathrm{~K}$ surrounded by atmosphere at $300 \mathrm{~K}$ has cooling rate $r_{0}$, the same body at $900 \mathrm{~K}$, surrounded by the same atmosphere will have cooling rate equal to-

1 $\frac{16}{3} r_{0}$
2 $\frac{8}{16} r_{0}$
3 $16 r_{0}$
4 $4 \mathrm{r}_{0}$