00. Conduction
Heat Transfer

149380 Three rods of same dimensions are arranged as shown in the figure. They have thermal conductivities $K_{1}, K_{2}$ and $K_{3}$. The points $A$ and $B$ are maintained at different temperatures. For the heat to flow at the same rate along $A C B$ and $A B$,

1 $\mathrm{K}_{3}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$
2 $\mathrm{K}_{3}=2\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)$
3 $\mathrm{K}_{3}=\frac{1}{2}\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)$
4 $\mathrm{K}_{3}=\mathrm{K}_{1}+\mathrm{K}_{2}$
Heat Transfer

149381 In the diagram, a system of two metals of equal lengths and of same cross sectional area are joined together.

The coefficient of thermal conductivities of the metals are $K$ and $2 K$ respectively. If the furnace temperature at one end is $300^{\circ} \mathrm{C}$ and ice box temperature at the other end $0^{\circ} \mathrm{C}$, then the junction temperature is

1 $100^{\circ} \mathrm{C}$
2 $125^{\circ} \mathrm{C}$
3 $150^{\circ} \mathrm{C}$
4 $200^{\circ} \mathrm{C}$
Heat Transfer

149383 Three rods of same dimensions have thermal conductivities $3 K, 2 K$ and $K$. They are arranged as shown in the figure below. Then in the steady state the temperature of the junction $P$ is

1 $\frac{200}{3}{ }^{\circ} \mathrm{C}$
2 $\frac{100}{3}{ }^{\circ} \mathrm{C}$
3 $75^{\circ} \mathrm{C}$
4 $\frac{50}{3}{ }^{\circ} \mathrm{C}$
Heat Transfer

149385 The temperatures of cold and hot junctions of a thermocouple are $0^{\circ} \mathrm{C}$ and $\mathrm{T}^{\circ} \mathrm{C}$ respectively. The thermo emf produced is
$\mathrm{E}=\mathrm{AT}-\frac{1}{2} \mathrm{BT}^{2}$
If $\mathrm{A}=16, \mathrm{~B}=\mathbf{0 . 0 8}$, the temperature inversion will be

1 $100^{\circ} \mathrm{C}$
2 $300^{\circ} \mathrm{C}$
3 $400^{\circ} \mathrm{C}$
4 $500^{\circ} \mathrm{C}$
Heat Transfer

149380 Three rods of same dimensions are arranged as shown in the figure. They have thermal conductivities $K_{1}, K_{2}$ and $K_{3}$. The points $A$ and $B$ are maintained at different temperatures. For the heat to flow at the same rate along $A C B$ and $A B$,

1 $\mathrm{K}_{3}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$
2 $\mathrm{K}_{3}=2\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)$
3 $\mathrm{K}_{3}=\frac{1}{2}\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)$
4 $\mathrm{K}_{3}=\mathrm{K}_{1}+\mathrm{K}_{2}$
Heat Transfer

149381 In the diagram, a system of two metals of equal lengths and of same cross sectional area are joined together.

The coefficient of thermal conductivities of the metals are $K$ and $2 K$ respectively. If the furnace temperature at one end is $300^{\circ} \mathrm{C}$ and ice box temperature at the other end $0^{\circ} \mathrm{C}$, then the junction temperature is

1 $100^{\circ} \mathrm{C}$
2 $125^{\circ} \mathrm{C}$
3 $150^{\circ} \mathrm{C}$
4 $200^{\circ} \mathrm{C}$
Heat Transfer

149383 Three rods of same dimensions have thermal conductivities $3 K, 2 K$ and $K$. They are arranged as shown in the figure below. Then in the steady state the temperature of the junction $P$ is

1 $\frac{200}{3}{ }^{\circ} \mathrm{C}$
2 $\frac{100}{3}{ }^{\circ} \mathrm{C}$
3 $75^{\circ} \mathrm{C}$
4 $\frac{50}{3}{ }^{\circ} \mathrm{C}$
Heat Transfer

149385 The temperatures of cold and hot junctions of a thermocouple are $0^{\circ} \mathrm{C}$ and $\mathrm{T}^{\circ} \mathrm{C}$ respectively. The thermo emf produced is
$\mathrm{E}=\mathrm{AT}-\frac{1}{2} \mathrm{BT}^{2}$
If $\mathrm{A}=16, \mathrm{~B}=\mathbf{0 . 0 8}$, the temperature inversion will be

1 $100^{\circ} \mathrm{C}$
2 $300^{\circ} \mathrm{C}$
3 $400^{\circ} \mathrm{C}$
4 $500^{\circ} \mathrm{C}$
Heat Transfer

149380 Three rods of same dimensions are arranged as shown in the figure. They have thermal conductivities $K_{1}, K_{2}$ and $K_{3}$. The points $A$ and $B$ are maintained at different temperatures. For the heat to flow at the same rate along $A C B$ and $A B$,

1 $\mathrm{K}_{3}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$
2 $\mathrm{K}_{3}=2\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)$
3 $\mathrm{K}_{3}=\frac{1}{2}\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)$
4 $\mathrm{K}_{3}=\mathrm{K}_{1}+\mathrm{K}_{2}$
Heat Transfer

149381 In the diagram, a system of two metals of equal lengths and of same cross sectional area are joined together.

The coefficient of thermal conductivities of the metals are $K$ and $2 K$ respectively. If the furnace temperature at one end is $300^{\circ} \mathrm{C}$ and ice box temperature at the other end $0^{\circ} \mathrm{C}$, then the junction temperature is

1 $100^{\circ} \mathrm{C}$
2 $125^{\circ} \mathrm{C}$
3 $150^{\circ} \mathrm{C}$
4 $200^{\circ} \mathrm{C}$
Heat Transfer

149383 Three rods of same dimensions have thermal conductivities $3 K, 2 K$ and $K$. They are arranged as shown in the figure below. Then in the steady state the temperature of the junction $P$ is

1 $\frac{200}{3}{ }^{\circ} \mathrm{C}$
2 $\frac{100}{3}{ }^{\circ} \mathrm{C}$
3 $75^{\circ} \mathrm{C}$
4 $\frac{50}{3}{ }^{\circ} \mathrm{C}$
Heat Transfer

149385 The temperatures of cold and hot junctions of a thermocouple are $0^{\circ} \mathrm{C}$ and $\mathrm{T}^{\circ} \mathrm{C}$ respectively. The thermo emf produced is
$\mathrm{E}=\mathrm{AT}-\frac{1}{2} \mathrm{BT}^{2}$
If $\mathrm{A}=16, \mathrm{~B}=\mathbf{0 . 0 8}$, the temperature inversion will be

1 $100^{\circ} \mathrm{C}$
2 $300^{\circ} \mathrm{C}$
3 $400^{\circ} \mathrm{C}$
4 $500^{\circ} \mathrm{C}$
Heat Transfer

149380 Three rods of same dimensions are arranged as shown in the figure. They have thermal conductivities $K_{1}, K_{2}$ and $K_{3}$. The points $A$ and $B$ are maintained at different temperatures. For the heat to flow at the same rate along $A C B$ and $A B$,

1 $\mathrm{K}_{3}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$
2 $\mathrm{K}_{3}=2\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)$
3 $\mathrm{K}_{3}=\frac{1}{2}\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)$
4 $\mathrm{K}_{3}=\mathrm{K}_{1}+\mathrm{K}_{2}$
Heat Transfer

149381 In the diagram, a system of two metals of equal lengths and of same cross sectional area are joined together.

The coefficient of thermal conductivities of the metals are $K$ and $2 K$ respectively. If the furnace temperature at one end is $300^{\circ} \mathrm{C}$ and ice box temperature at the other end $0^{\circ} \mathrm{C}$, then the junction temperature is

1 $100^{\circ} \mathrm{C}$
2 $125^{\circ} \mathrm{C}$
3 $150^{\circ} \mathrm{C}$
4 $200^{\circ} \mathrm{C}$
Heat Transfer

149383 Three rods of same dimensions have thermal conductivities $3 K, 2 K$ and $K$. They are arranged as shown in the figure below. Then in the steady state the temperature of the junction $P$ is

1 $\frac{200}{3}{ }^{\circ} \mathrm{C}$
2 $\frac{100}{3}{ }^{\circ} \mathrm{C}$
3 $75^{\circ} \mathrm{C}$
4 $\frac{50}{3}{ }^{\circ} \mathrm{C}$
Heat Transfer

149385 The temperatures of cold and hot junctions of a thermocouple are $0^{\circ} \mathrm{C}$ and $\mathrm{T}^{\circ} \mathrm{C}$ respectively. The thermo emf produced is
$\mathrm{E}=\mathrm{AT}-\frac{1}{2} \mathrm{BT}^{2}$
If $\mathrm{A}=16, \mathrm{~B}=\mathbf{0 . 0 8}$, the temperature inversion will be

1 $100^{\circ} \mathrm{C}$
2 $300^{\circ} \mathrm{C}$
3 $400^{\circ} \mathrm{C}$
4 $500^{\circ} \mathrm{C}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here