00. Conduction
Heat Transfer

149323 If a metallic sphere gets cooled from $62^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in $10 \mathrm{~min}$ and in the next $10 \mathrm{~min}$ gets cooled to $42^{\circ} \mathrm{C}$, then the temperature of the surroundings is

1 $30^{\circ} \mathrm{C}$
2 $36^{\circ} \mathrm{C}$
3 $26^{\circ} \mathrm{C}$
4 $20^{\circ} \mathrm{C}$
Heat Transfer

149324 A metal rod of length $2 \mathrm{~m}$ has cross - sectional areas $2 \mathrm{~A}$ and $\mathrm{A}$ as shown in figure. The two ends are maintained at temperatures $100^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. The temperature of middle point $\mathrm{C}$ is

1 $80^{\circ} \mathrm{C}$
2 $85^{\circ} \mathrm{C}$
3 $90^{\circ} \mathrm{C}$
4 $95^{\circ} \mathrm{C}$
Heat Transfer

149325 Two rods of the same length and diameter having thermal conductivities $K_{1}$ and $K_{2}$ are joined in parallel. The equivalent thermal conductivity of the combination is

1 $\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$
2 $\mathrm{K}_{1}+\mathrm{K}_{2}$
3 $\frac{K_{1}+K_{2}}{2}$
4 $\sqrt{\mathrm{K}_{1} \mathrm{~K}_{2}}$
Heat Transfer

149326 If $K$ denotes coefficient of thermal conductivity, $d$ the density and $c$ the specific heat, the unit of $X$, where $X=K / d c$ will be

1 $\mathrm{cm} \mathrm{sec}^{-1}$
2 $\mathrm{cm}^{2} \mathrm{sec}^{-2}$
3 $\mathrm{cm} \mathrm{sec}$
4 $\mathrm{cm}^{2} \mathrm{sec}^{-1}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Heat Transfer

149323 If a metallic sphere gets cooled from $62^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in $10 \mathrm{~min}$ and in the next $10 \mathrm{~min}$ gets cooled to $42^{\circ} \mathrm{C}$, then the temperature of the surroundings is

1 $30^{\circ} \mathrm{C}$
2 $36^{\circ} \mathrm{C}$
3 $26^{\circ} \mathrm{C}$
4 $20^{\circ} \mathrm{C}$
Heat Transfer

149324 A metal rod of length $2 \mathrm{~m}$ has cross - sectional areas $2 \mathrm{~A}$ and $\mathrm{A}$ as shown in figure. The two ends are maintained at temperatures $100^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. The temperature of middle point $\mathrm{C}$ is

1 $80^{\circ} \mathrm{C}$
2 $85^{\circ} \mathrm{C}$
3 $90^{\circ} \mathrm{C}$
4 $95^{\circ} \mathrm{C}$
Heat Transfer

149325 Two rods of the same length and diameter having thermal conductivities $K_{1}$ and $K_{2}$ are joined in parallel. The equivalent thermal conductivity of the combination is

1 $\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$
2 $\mathrm{K}_{1}+\mathrm{K}_{2}$
3 $\frac{K_{1}+K_{2}}{2}$
4 $\sqrt{\mathrm{K}_{1} \mathrm{~K}_{2}}$
Heat Transfer

149326 If $K$ denotes coefficient of thermal conductivity, $d$ the density and $c$ the specific heat, the unit of $X$, where $X=K / d c$ will be

1 $\mathrm{cm} \mathrm{sec}^{-1}$
2 $\mathrm{cm}^{2} \mathrm{sec}^{-2}$
3 $\mathrm{cm} \mathrm{sec}$
4 $\mathrm{cm}^{2} \mathrm{sec}^{-1}$
Heat Transfer

149323 If a metallic sphere gets cooled from $62^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in $10 \mathrm{~min}$ and in the next $10 \mathrm{~min}$ gets cooled to $42^{\circ} \mathrm{C}$, then the temperature of the surroundings is

1 $30^{\circ} \mathrm{C}$
2 $36^{\circ} \mathrm{C}$
3 $26^{\circ} \mathrm{C}$
4 $20^{\circ} \mathrm{C}$
Heat Transfer

149324 A metal rod of length $2 \mathrm{~m}$ has cross - sectional areas $2 \mathrm{~A}$ and $\mathrm{A}$ as shown in figure. The two ends are maintained at temperatures $100^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. The temperature of middle point $\mathrm{C}$ is

1 $80^{\circ} \mathrm{C}$
2 $85^{\circ} \mathrm{C}$
3 $90^{\circ} \mathrm{C}$
4 $95^{\circ} \mathrm{C}$
Heat Transfer

149325 Two rods of the same length and diameter having thermal conductivities $K_{1}$ and $K_{2}$ are joined in parallel. The equivalent thermal conductivity of the combination is

1 $\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$
2 $\mathrm{K}_{1}+\mathrm{K}_{2}$
3 $\frac{K_{1}+K_{2}}{2}$
4 $\sqrt{\mathrm{K}_{1} \mathrm{~K}_{2}}$
Heat Transfer

149326 If $K$ denotes coefficient of thermal conductivity, $d$ the density and $c$ the specific heat, the unit of $X$, where $X=K / d c$ will be

1 $\mathrm{cm} \mathrm{sec}^{-1}$
2 $\mathrm{cm}^{2} \mathrm{sec}^{-2}$
3 $\mathrm{cm} \mathrm{sec}$
4 $\mathrm{cm}^{2} \mathrm{sec}^{-1}$
Heat Transfer

149323 If a metallic sphere gets cooled from $62^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in $10 \mathrm{~min}$ and in the next $10 \mathrm{~min}$ gets cooled to $42^{\circ} \mathrm{C}$, then the temperature of the surroundings is

1 $30^{\circ} \mathrm{C}$
2 $36^{\circ} \mathrm{C}$
3 $26^{\circ} \mathrm{C}$
4 $20^{\circ} \mathrm{C}$
Heat Transfer

149324 A metal rod of length $2 \mathrm{~m}$ has cross - sectional areas $2 \mathrm{~A}$ and $\mathrm{A}$ as shown in figure. The two ends are maintained at temperatures $100^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. The temperature of middle point $\mathrm{C}$ is

1 $80^{\circ} \mathrm{C}$
2 $85^{\circ} \mathrm{C}$
3 $90^{\circ} \mathrm{C}$
4 $95^{\circ} \mathrm{C}$
Heat Transfer

149325 Two rods of the same length and diameter having thermal conductivities $K_{1}$ and $K_{2}$ are joined in parallel. The equivalent thermal conductivity of the combination is

1 $\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$
2 $\mathrm{K}_{1}+\mathrm{K}_{2}$
3 $\frac{K_{1}+K_{2}}{2}$
4 $\sqrt{\mathrm{K}_{1} \mathrm{~K}_{2}}$
Heat Transfer

149326 If $K$ denotes coefficient of thermal conductivity, $d$ the density and $c$ the specific heat, the unit of $X$, where $X=K / d c$ will be

1 $\mathrm{cm} \mathrm{sec}^{-1}$
2 $\mathrm{cm}^{2} \mathrm{sec}^{-2}$
3 $\mathrm{cm} \mathrm{sec}$
4 $\mathrm{cm}^{2} \mathrm{sec}^{-1}$