09. Heat Engine, Carnot’s Cycle and Refrigeration (COP)
Thermodynamics

148544 An ideal Carnot's engine with an efficiency of $\mathbf{3 0 \%}$ operates between a source and a sink. If the temperature of the source is $500 \mathrm{~K}$, that of the sink is

1 $27^{\circ} \mathrm{C}$
2 $57^{\circ} \mathrm{C}$
3 $77^{\circ} \mathrm{C}$
4 $107^{\circ} \mathrm{C}$
Thermodynamics

148545 Two heat engines $X$ and $Y$ of same efficiency are connected in series in such a way that the sink of $X$ works as source of $Y$. $X$ receives heat at $900 \mathrm{~K}$ and rejects some heat to its sink at TK and in turn $Y$ rejects heat to its sink at $400 \mathrm{~K}$, then the temperature $T$ is

1 $550 \mathrm{~K}$
2 $600 \mathrm{~K}$
3 $650 \mathrm{~K}$
4 $700 \mathrm{~K}$
Thermodynamics

148546 A Carnot engine of efficiency $40 \%$, takes heat from a source maintained at a temperature of $500 \mathrm{~K}$. It is desired to have an engine of efficiency $60 \%$. Then, the source temperature for the same sink temperature must be

1 $650 \mathrm{~K}$
2 $750 \mathrm{~K}$
3 $550 \mathrm{~K}$
4 $850 \mathrm{~K}$
Thermodynamics

148547 Match the temperature of the source and sink ( $T_{1}$ and $T_{2}$ respectively) of a Carnot heat engine given in List-I with the corresponding efficiencies given in List - II.
| List-I | List-II |
| :--- | :--- |
| A. $\mathrm{T}_1=500 \mathrm{~K}, \mathrm{~T}_2=300 \mathrm{~K}$ | (i) 0.2 |
| B. $\mathrm{T}_1=500 \mathrm{~K}, \mathrm{~T}_2=350 \mathrm{~K}$ | (ii) 0.3 |
| C. $\mathrm{T}_1=800 \mathrm{~K}, \mathrm{~T}_2=400 \mathrm{~K}$ | (iii) 0.4 |
| D. $\mathrm{T}_1=450 \mathrm{~K}, \mathrm{~T}_2=360 \mathrm{~K}$ | (iv) 0.5 |
The correct match is
Codes

1 (iii) (A) (iv) (B) (ii) (C) (i) (D)
2 (iv) (A) (iii) (B) (ii) (C) (i) (D)
3 (iii) (A) (i) (B) (iv) (C) (ii) (D)
4 (iii) (A) (ii) (B) (iv) (C) (i) (D)
Thermodynamics

148544 An ideal Carnot's engine with an efficiency of $\mathbf{3 0 \%}$ operates between a source and a sink. If the temperature of the source is $500 \mathrm{~K}$, that of the sink is

1 $27^{\circ} \mathrm{C}$
2 $57^{\circ} \mathrm{C}$
3 $77^{\circ} \mathrm{C}$
4 $107^{\circ} \mathrm{C}$
Thermodynamics

148545 Two heat engines $X$ and $Y$ of same efficiency are connected in series in such a way that the sink of $X$ works as source of $Y$. $X$ receives heat at $900 \mathrm{~K}$ and rejects some heat to its sink at TK and in turn $Y$ rejects heat to its sink at $400 \mathrm{~K}$, then the temperature $T$ is

1 $550 \mathrm{~K}$
2 $600 \mathrm{~K}$
3 $650 \mathrm{~K}$
4 $700 \mathrm{~K}$
Thermodynamics

148546 A Carnot engine of efficiency $40 \%$, takes heat from a source maintained at a temperature of $500 \mathrm{~K}$. It is desired to have an engine of efficiency $60 \%$. Then, the source temperature for the same sink temperature must be

1 $650 \mathrm{~K}$
2 $750 \mathrm{~K}$
3 $550 \mathrm{~K}$
4 $850 \mathrm{~K}$
Thermodynamics

148547 Match the temperature of the source and sink ( $T_{1}$ and $T_{2}$ respectively) of a Carnot heat engine given in List-I with the corresponding efficiencies given in List - II.
| List-I | List-II |
| :--- | :--- |
| A. $\mathrm{T}_1=500 \mathrm{~K}, \mathrm{~T}_2=300 \mathrm{~K}$ | (i) 0.2 |
| B. $\mathrm{T}_1=500 \mathrm{~K}, \mathrm{~T}_2=350 \mathrm{~K}$ | (ii) 0.3 |
| C. $\mathrm{T}_1=800 \mathrm{~K}, \mathrm{~T}_2=400 \mathrm{~K}$ | (iii) 0.4 |
| D. $\mathrm{T}_1=450 \mathrm{~K}, \mathrm{~T}_2=360 \mathrm{~K}$ | (iv) 0.5 |
The correct match is
Codes

1 (iii) (A) (iv) (B) (ii) (C) (i) (D)
2 (iv) (A) (iii) (B) (ii) (C) (i) (D)
3 (iii) (A) (i) (B) (iv) (C) (ii) (D)
4 (iii) (A) (ii) (B) (iv) (C) (i) (D)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermodynamics

148544 An ideal Carnot's engine with an efficiency of $\mathbf{3 0 \%}$ operates between a source and a sink. If the temperature of the source is $500 \mathrm{~K}$, that of the sink is

1 $27^{\circ} \mathrm{C}$
2 $57^{\circ} \mathrm{C}$
3 $77^{\circ} \mathrm{C}$
4 $107^{\circ} \mathrm{C}$
Thermodynamics

148545 Two heat engines $X$ and $Y$ of same efficiency are connected in series in such a way that the sink of $X$ works as source of $Y$. $X$ receives heat at $900 \mathrm{~K}$ and rejects some heat to its sink at TK and in turn $Y$ rejects heat to its sink at $400 \mathrm{~K}$, then the temperature $T$ is

1 $550 \mathrm{~K}$
2 $600 \mathrm{~K}$
3 $650 \mathrm{~K}$
4 $700 \mathrm{~K}$
Thermodynamics

148546 A Carnot engine of efficiency $40 \%$, takes heat from a source maintained at a temperature of $500 \mathrm{~K}$. It is desired to have an engine of efficiency $60 \%$. Then, the source temperature for the same sink temperature must be

1 $650 \mathrm{~K}$
2 $750 \mathrm{~K}$
3 $550 \mathrm{~K}$
4 $850 \mathrm{~K}$
Thermodynamics

148547 Match the temperature of the source and sink ( $T_{1}$ and $T_{2}$ respectively) of a Carnot heat engine given in List-I with the corresponding efficiencies given in List - II.
| List-I | List-II |
| :--- | :--- |
| A. $\mathrm{T}_1=500 \mathrm{~K}, \mathrm{~T}_2=300 \mathrm{~K}$ | (i) 0.2 |
| B. $\mathrm{T}_1=500 \mathrm{~K}, \mathrm{~T}_2=350 \mathrm{~K}$ | (ii) 0.3 |
| C. $\mathrm{T}_1=800 \mathrm{~K}, \mathrm{~T}_2=400 \mathrm{~K}$ | (iii) 0.4 |
| D. $\mathrm{T}_1=450 \mathrm{~K}, \mathrm{~T}_2=360 \mathrm{~K}$ | (iv) 0.5 |
The correct match is
Codes

1 (iii) (A) (iv) (B) (ii) (C) (i) (D)
2 (iv) (A) (iii) (B) (ii) (C) (i) (D)
3 (iii) (A) (i) (B) (iv) (C) (ii) (D)
4 (iii) (A) (ii) (B) (iv) (C) (i) (D)
Thermodynamics

148544 An ideal Carnot's engine with an efficiency of $\mathbf{3 0 \%}$ operates between a source and a sink. If the temperature of the source is $500 \mathrm{~K}$, that of the sink is

1 $27^{\circ} \mathrm{C}$
2 $57^{\circ} \mathrm{C}$
3 $77^{\circ} \mathrm{C}$
4 $107^{\circ} \mathrm{C}$
Thermodynamics

148545 Two heat engines $X$ and $Y$ of same efficiency are connected in series in such a way that the sink of $X$ works as source of $Y$. $X$ receives heat at $900 \mathrm{~K}$ and rejects some heat to its sink at TK and in turn $Y$ rejects heat to its sink at $400 \mathrm{~K}$, then the temperature $T$ is

1 $550 \mathrm{~K}$
2 $600 \mathrm{~K}$
3 $650 \mathrm{~K}$
4 $700 \mathrm{~K}$
Thermodynamics

148546 A Carnot engine of efficiency $40 \%$, takes heat from a source maintained at a temperature of $500 \mathrm{~K}$. It is desired to have an engine of efficiency $60 \%$. Then, the source temperature for the same sink temperature must be

1 $650 \mathrm{~K}$
2 $750 \mathrm{~K}$
3 $550 \mathrm{~K}$
4 $850 \mathrm{~K}$
Thermodynamics

148547 Match the temperature of the source and sink ( $T_{1}$ and $T_{2}$ respectively) of a Carnot heat engine given in List-I with the corresponding efficiencies given in List - II.
| List-I | List-II |
| :--- | :--- |
| A. $\mathrm{T}_1=500 \mathrm{~K}, \mathrm{~T}_2=300 \mathrm{~K}$ | (i) 0.2 |
| B. $\mathrm{T}_1=500 \mathrm{~K}, \mathrm{~T}_2=350 \mathrm{~K}$ | (ii) 0.3 |
| C. $\mathrm{T}_1=800 \mathrm{~K}, \mathrm{~T}_2=400 \mathrm{~K}$ | (iii) 0.4 |
| D. $\mathrm{T}_1=450 \mathrm{~K}, \mathrm{~T}_2=360 \mathrm{~K}$ | (iv) 0.5 |
The correct match is
Codes

1 (iii) (A) (iv) (B) (ii) (C) (i) (D)
2 (iv) (A) (iii) (B) (ii) (C) (i) (D)
3 (iii) (A) (i) (B) (iv) (C) (ii) (D)
4 (iii) (A) (ii) (B) (iv) (C) (i) (D)