06. Adiabatic Process
Thermodynamics

148436 A hypothetical gas expands adiabatically such that its volume changes from 08 litres to 27 liters. If the ratio of final pressure of the gas to initial pressure of the gas is $\frac{16}{81}$. Then the ratio of $\frac{c_{p}}{c_{v}}$ will be.

1 $\frac{3}{1}$
2 $\frac{3}{2}$
3 $\frac{1}{2}$
4 $\frac{4}{3}$
Thermodynamics

148439 The ratio of the adiabatic to isothermal elasticities of a triatomic (non-linear) gas is

1 $3: 4$
2 $1: 2$
3 $4: 3$
4 $5: 3$
Thermodynamics

148440 Five moles of Hydrogen gas initially at STP is compressed adiabatically so that its temperature becomes $673 \mathrm{~K}$. The increase in internal energy of the gas is \(\left(\mathrm{R}=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, \gamma=1.4\right.\) for diatomic gas)

1 $80.5 \mathrm{~kJ}$
2 $21.55 \mathrm{~kJ}$
3 $41.50 \mathrm{~kJ}$
4 $65.55 \mathrm{~kJ}$
Thermodynamics

148441 In an adiabatic process, the pressure is increased by $\frac{2}{3} \%$.If $\gamma=\frac{2}{3}$, then the volume decreases by nearly

1 $\frac{4}{9} \%$
2 $\frac{2}{3} \%$
3 $1 \%$
4 $\frac{9}{4} \%$
Thermodynamics

148442 Which equation is valid for adiabatic process?

1 $\mathrm{TV}^{\gamma-1}=$ constant
2 $\mathrm{pV}^{\gamma-1}=$ constant
3 $\mathrm{T}^{\gamma} \mathrm{V}^{\gamma-1}=$ constant
4 $\frac{\mathrm{p}^{\gamma-1}}{\mathrm{~T}^{\gamma-1}}=$ constant
Thermodynamics

148436 A hypothetical gas expands adiabatically such that its volume changes from 08 litres to 27 liters. If the ratio of final pressure of the gas to initial pressure of the gas is $\frac{16}{81}$. Then the ratio of $\frac{c_{p}}{c_{v}}$ will be.

1 $\frac{3}{1}$
2 $\frac{3}{2}$
3 $\frac{1}{2}$
4 $\frac{4}{3}$
Thermodynamics

148439 The ratio of the adiabatic to isothermal elasticities of a triatomic (non-linear) gas is

1 $3: 4$
2 $1: 2$
3 $4: 3$
4 $5: 3$
Thermodynamics

148440 Five moles of Hydrogen gas initially at STP is compressed adiabatically so that its temperature becomes $673 \mathrm{~K}$. The increase in internal energy of the gas is \(\left(\mathrm{R}=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, \gamma=1.4\right.\) for diatomic gas)

1 $80.5 \mathrm{~kJ}$
2 $21.55 \mathrm{~kJ}$
3 $41.50 \mathrm{~kJ}$
4 $65.55 \mathrm{~kJ}$
Thermodynamics

148441 In an adiabatic process, the pressure is increased by $\frac{2}{3} \%$.If $\gamma=\frac{2}{3}$, then the volume decreases by nearly

1 $\frac{4}{9} \%$
2 $\frac{2}{3} \%$
3 $1 \%$
4 $\frac{9}{4} \%$
Thermodynamics

148442 Which equation is valid for adiabatic process?

1 $\mathrm{TV}^{\gamma-1}=$ constant
2 $\mathrm{pV}^{\gamma-1}=$ constant
3 $\mathrm{T}^{\gamma} \mathrm{V}^{\gamma-1}=$ constant
4 $\frac{\mathrm{p}^{\gamma-1}}{\mathrm{~T}^{\gamma-1}}=$ constant
Thermodynamics

148436 A hypothetical gas expands adiabatically such that its volume changes from 08 litres to 27 liters. If the ratio of final pressure of the gas to initial pressure of the gas is $\frac{16}{81}$. Then the ratio of $\frac{c_{p}}{c_{v}}$ will be.

1 $\frac{3}{1}$
2 $\frac{3}{2}$
3 $\frac{1}{2}$
4 $\frac{4}{3}$
Thermodynamics

148439 The ratio of the adiabatic to isothermal elasticities of a triatomic (non-linear) gas is

1 $3: 4$
2 $1: 2$
3 $4: 3$
4 $5: 3$
Thermodynamics

148440 Five moles of Hydrogen gas initially at STP is compressed adiabatically so that its temperature becomes $673 \mathrm{~K}$. The increase in internal energy of the gas is \(\left(\mathrm{R}=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, \gamma=1.4\right.\) for diatomic gas)

1 $80.5 \mathrm{~kJ}$
2 $21.55 \mathrm{~kJ}$
3 $41.50 \mathrm{~kJ}$
4 $65.55 \mathrm{~kJ}$
Thermodynamics

148441 In an adiabatic process, the pressure is increased by $\frac{2}{3} \%$.If $\gamma=\frac{2}{3}$, then the volume decreases by nearly

1 $\frac{4}{9} \%$
2 $\frac{2}{3} \%$
3 $1 \%$
4 $\frac{9}{4} \%$
Thermodynamics

148442 Which equation is valid for adiabatic process?

1 $\mathrm{TV}^{\gamma-1}=$ constant
2 $\mathrm{pV}^{\gamma-1}=$ constant
3 $\mathrm{T}^{\gamma} \mathrm{V}^{\gamma-1}=$ constant
4 $\frac{\mathrm{p}^{\gamma-1}}{\mathrm{~T}^{\gamma-1}}=$ constant
Thermodynamics

148436 A hypothetical gas expands adiabatically such that its volume changes from 08 litres to 27 liters. If the ratio of final pressure of the gas to initial pressure of the gas is $\frac{16}{81}$. Then the ratio of $\frac{c_{p}}{c_{v}}$ will be.

1 $\frac{3}{1}$
2 $\frac{3}{2}$
3 $\frac{1}{2}$
4 $\frac{4}{3}$
Thermodynamics

148439 The ratio of the adiabatic to isothermal elasticities of a triatomic (non-linear) gas is

1 $3: 4$
2 $1: 2$
3 $4: 3$
4 $5: 3$
Thermodynamics

148440 Five moles of Hydrogen gas initially at STP is compressed adiabatically so that its temperature becomes $673 \mathrm{~K}$. The increase in internal energy of the gas is \(\left(\mathrm{R}=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, \gamma=1.4\right.\) for diatomic gas)

1 $80.5 \mathrm{~kJ}$
2 $21.55 \mathrm{~kJ}$
3 $41.50 \mathrm{~kJ}$
4 $65.55 \mathrm{~kJ}$
Thermodynamics

148441 In an adiabatic process, the pressure is increased by $\frac{2}{3} \%$.If $\gamma=\frac{2}{3}$, then the volume decreases by nearly

1 $\frac{4}{9} \%$
2 $\frac{2}{3} \%$
3 $1 \%$
4 $\frac{9}{4} \%$
Thermodynamics

148442 Which equation is valid for adiabatic process?

1 $\mathrm{TV}^{\gamma-1}=$ constant
2 $\mathrm{pV}^{\gamma-1}=$ constant
3 $\mathrm{T}^{\gamma} \mathrm{V}^{\gamma-1}=$ constant
4 $\frac{\mathrm{p}^{\gamma-1}}{\mathrm{~T}^{\gamma-1}}=$ constant
Thermodynamics

148436 A hypothetical gas expands adiabatically such that its volume changes from 08 litres to 27 liters. If the ratio of final pressure of the gas to initial pressure of the gas is $\frac{16}{81}$. Then the ratio of $\frac{c_{p}}{c_{v}}$ will be.

1 $\frac{3}{1}$
2 $\frac{3}{2}$
3 $\frac{1}{2}$
4 $\frac{4}{3}$
Thermodynamics

148439 The ratio of the adiabatic to isothermal elasticities of a triatomic (non-linear) gas is

1 $3: 4$
2 $1: 2$
3 $4: 3$
4 $5: 3$
Thermodynamics

148440 Five moles of Hydrogen gas initially at STP is compressed adiabatically so that its temperature becomes $673 \mathrm{~K}$. The increase in internal energy of the gas is \(\left(\mathrm{R}=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, \gamma=1.4\right.\) for diatomic gas)

1 $80.5 \mathrm{~kJ}$
2 $21.55 \mathrm{~kJ}$
3 $41.50 \mathrm{~kJ}$
4 $65.55 \mathrm{~kJ}$
Thermodynamics

148441 In an adiabatic process, the pressure is increased by $\frac{2}{3} \%$.If $\gamma=\frac{2}{3}$, then the volume decreases by nearly

1 $\frac{4}{9} \%$
2 $\frac{2}{3} \%$
3 $1 \%$
4 $\frac{9}{4} \%$
Thermodynamics

148442 Which equation is valid for adiabatic process?

1 $\mathrm{TV}^{\gamma-1}=$ constant
2 $\mathrm{pV}^{\gamma-1}=$ constant
3 $\mathrm{T}^{\gamma} \mathrm{V}^{\gamma-1}=$ constant
4 $\frac{\mathrm{p}^{\gamma-1}}{\mathrm{~T}^{\gamma-1}}=$ constant