148438
800 cc volume of a gas having $\gamma=\frac{5}{3}$ is suddenly compressed adiabatically to 100 cc. If the initial pressure is $P$, then the final pressure will be:
1 $\frac{P}{32}$
2 $\left(\frac{24}{5}\right) \mathrm{P}$
3 $8 \mathrm{P}$
4 $32 \mathrm{P}$
5 $16 \mathrm{P}$
Explanation:
D Given, $\mathrm{P}_{1}=\mathrm{P}, \quad \gamma=\frac{5}{3}, \mathrm{~V}_{1}=800 \mathrm{cc}, \mathrm{V}_{2}=100 \mathrm{cc}$ We know, $\quad \mathrm{PV}^{\gamma}=$ Constant $\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma}=\left(\frac{800}{100}\right)^{5 / 3}$ $\mathrm{P}_{2}=32 \mathrm{P}$
Kerala CEE 2004
Thermodynamics
148443
In adiabatic expansion of gas, the quantity which remains constant is
1 amount of heat
2 temperature
3 both the amount of heat and temperature
4 pressure and temperature of gas
Explanation:
A In adiabatic expansion of gas have no heat is allowed to enter into or escape from the gas so, amount of heat remains constant in an adiabatic expansion of gas. For a adiabatic condition- $\mathrm{PV}^{\gamma}=\text { constant }$ The ratio of specific heat $(\gamma)=\frac{C_{P}}{C_{V}}$ of the gas.
CG PET- 2013
Thermodynamics
148444
When gas in a vessel expands its internal energy decrease. The process involved is
1 isothermal
2 isobaric
3 adiabatic
4 isochoric
Explanation:
C Gas in a vessel expands its internal energy decrease. The process involved is adiabatic $\quad \mathrm{dU}+\mathrm{dW}=\mathrm{dQ}$ $\therefore \mathrm{d} U=-\mathrm{dW}$ Hence, the process is adiabatic.
CG PET- 2008
Thermodynamics
148449
Ideal gas for which $\gamma=1.5$ is suddenly compressed to $\frac{1}{4}$ th of its initial volume. The ratio of the final pressure to the initial pressure is $\left(\gamma=\frac{\mathbf{C}_{\mathrm{P}}}{\mathbf{C}_{\mathrm{V}}}\right)$
1 $4: 1$
2 $8: 1$
3 $1: 16$
4 $1: 8$
Explanation:
B In an adiabatic process, the energy transfer from the thermodynamic system to surrounding is only in the form of work i.e. there is no transfer of heat and matter in an adiabatic process. For adiabatic process, $\mathrm{PV}$ is constant. $\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}$ $\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)^{\gamma}=\left(\frac{\mathrm{V} / 4}{\mathrm{~V}}\right)^{1.5}=\frac{1}{4^{3 / 2}}=\frac{1}{8}$ $\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{8}{1}$
148438
800 cc volume of a gas having $\gamma=\frac{5}{3}$ is suddenly compressed adiabatically to 100 cc. If the initial pressure is $P$, then the final pressure will be:
1 $\frac{P}{32}$
2 $\left(\frac{24}{5}\right) \mathrm{P}$
3 $8 \mathrm{P}$
4 $32 \mathrm{P}$
5 $16 \mathrm{P}$
Explanation:
D Given, $\mathrm{P}_{1}=\mathrm{P}, \quad \gamma=\frac{5}{3}, \mathrm{~V}_{1}=800 \mathrm{cc}, \mathrm{V}_{2}=100 \mathrm{cc}$ We know, $\quad \mathrm{PV}^{\gamma}=$ Constant $\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma}=\left(\frac{800}{100}\right)^{5 / 3}$ $\mathrm{P}_{2}=32 \mathrm{P}$
Kerala CEE 2004
Thermodynamics
148443
In adiabatic expansion of gas, the quantity which remains constant is
1 amount of heat
2 temperature
3 both the amount of heat and temperature
4 pressure and temperature of gas
Explanation:
A In adiabatic expansion of gas have no heat is allowed to enter into or escape from the gas so, amount of heat remains constant in an adiabatic expansion of gas. For a adiabatic condition- $\mathrm{PV}^{\gamma}=\text { constant }$ The ratio of specific heat $(\gamma)=\frac{C_{P}}{C_{V}}$ of the gas.
CG PET- 2013
Thermodynamics
148444
When gas in a vessel expands its internal energy decrease. The process involved is
1 isothermal
2 isobaric
3 adiabatic
4 isochoric
Explanation:
C Gas in a vessel expands its internal energy decrease. The process involved is adiabatic $\quad \mathrm{dU}+\mathrm{dW}=\mathrm{dQ}$ $\therefore \mathrm{d} U=-\mathrm{dW}$ Hence, the process is adiabatic.
CG PET- 2008
Thermodynamics
148449
Ideal gas for which $\gamma=1.5$ is suddenly compressed to $\frac{1}{4}$ th of its initial volume. The ratio of the final pressure to the initial pressure is $\left(\gamma=\frac{\mathbf{C}_{\mathrm{P}}}{\mathbf{C}_{\mathrm{V}}}\right)$
1 $4: 1$
2 $8: 1$
3 $1: 16$
4 $1: 8$
Explanation:
B In an adiabatic process, the energy transfer from the thermodynamic system to surrounding is only in the form of work i.e. there is no transfer of heat and matter in an adiabatic process. For adiabatic process, $\mathrm{PV}$ is constant. $\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}$ $\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)^{\gamma}=\left(\frac{\mathrm{V} / 4}{\mathrm{~V}}\right)^{1.5}=\frac{1}{4^{3 / 2}}=\frac{1}{8}$ $\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{8}{1}$
148438
800 cc volume of a gas having $\gamma=\frac{5}{3}$ is suddenly compressed adiabatically to 100 cc. If the initial pressure is $P$, then the final pressure will be:
1 $\frac{P}{32}$
2 $\left(\frac{24}{5}\right) \mathrm{P}$
3 $8 \mathrm{P}$
4 $32 \mathrm{P}$
5 $16 \mathrm{P}$
Explanation:
D Given, $\mathrm{P}_{1}=\mathrm{P}, \quad \gamma=\frac{5}{3}, \mathrm{~V}_{1}=800 \mathrm{cc}, \mathrm{V}_{2}=100 \mathrm{cc}$ We know, $\quad \mathrm{PV}^{\gamma}=$ Constant $\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma}=\left(\frac{800}{100}\right)^{5 / 3}$ $\mathrm{P}_{2}=32 \mathrm{P}$
Kerala CEE 2004
Thermodynamics
148443
In adiabatic expansion of gas, the quantity which remains constant is
1 amount of heat
2 temperature
3 both the amount of heat and temperature
4 pressure and temperature of gas
Explanation:
A In adiabatic expansion of gas have no heat is allowed to enter into or escape from the gas so, amount of heat remains constant in an adiabatic expansion of gas. For a adiabatic condition- $\mathrm{PV}^{\gamma}=\text { constant }$ The ratio of specific heat $(\gamma)=\frac{C_{P}}{C_{V}}$ of the gas.
CG PET- 2013
Thermodynamics
148444
When gas in a vessel expands its internal energy decrease. The process involved is
1 isothermal
2 isobaric
3 adiabatic
4 isochoric
Explanation:
C Gas in a vessel expands its internal energy decrease. The process involved is adiabatic $\quad \mathrm{dU}+\mathrm{dW}=\mathrm{dQ}$ $\therefore \mathrm{d} U=-\mathrm{dW}$ Hence, the process is adiabatic.
CG PET- 2008
Thermodynamics
148449
Ideal gas for which $\gamma=1.5$ is suddenly compressed to $\frac{1}{4}$ th of its initial volume. The ratio of the final pressure to the initial pressure is $\left(\gamma=\frac{\mathbf{C}_{\mathrm{P}}}{\mathbf{C}_{\mathrm{V}}}\right)$
1 $4: 1$
2 $8: 1$
3 $1: 16$
4 $1: 8$
Explanation:
B In an adiabatic process, the energy transfer from the thermodynamic system to surrounding is only in the form of work i.e. there is no transfer of heat and matter in an adiabatic process. For adiabatic process, $\mathrm{PV}$ is constant. $\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}$ $\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)^{\gamma}=\left(\frac{\mathrm{V} / 4}{\mathrm{~V}}\right)^{1.5}=\frac{1}{4^{3 / 2}}=\frac{1}{8}$ $\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{8}{1}$
148438
800 cc volume of a gas having $\gamma=\frac{5}{3}$ is suddenly compressed adiabatically to 100 cc. If the initial pressure is $P$, then the final pressure will be:
1 $\frac{P}{32}$
2 $\left(\frac{24}{5}\right) \mathrm{P}$
3 $8 \mathrm{P}$
4 $32 \mathrm{P}$
5 $16 \mathrm{P}$
Explanation:
D Given, $\mathrm{P}_{1}=\mathrm{P}, \quad \gamma=\frac{5}{3}, \mathrm{~V}_{1}=800 \mathrm{cc}, \mathrm{V}_{2}=100 \mathrm{cc}$ We know, $\quad \mathrm{PV}^{\gamma}=$ Constant $\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma}=\left(\frac{800}{100}\right)^{5 / 3}$ $\mathrm{P}_{2}=32 \mathrm{P}$
Kerala CEE 2004
Thermodynamics
148443
In adiabatic expansion of gas, the quantity which remains constant is
1 amount of heat
2 temperature
3 both the amount of heat and temperature
4 pressure and temperature of gas
Explanation:
A In adiabatic expansion of gas have no heat is allowed to enter into or escape from the gas so, amount of heat remains constant in an adiabatic expansion of gas. For a adiabatic condition- $\mathrm{PV}^{\gamma}=\text { constant }$ The ratio of specific heat $(\gamma)=\frac{C_{P}}{C_{V}}$ of the gas.
CG PET- 2013
Thermodynamics
148444
When gas in a vessel expands its internal energy decrease. The process involved is
1 isothermal
2 isobaric
3 adiabatic
4 isochoric
Explanation:
C Gas in a vessel expands its internal energy decrease. The process involved is adiabatic $\quad \mathrm{dU}+\mathrm{dW}=\mathrm{dQ}$ $\therefore \mathrm{d} U=-\mathrm{dW}$ Hence, the process is adiabatic.
CG PET- 2008
Thermodynamics
148449
Ideal gas for which $\gamma=1.5$ is suddenly compressed to $\frac{1}{4}$ th of its initial volume. The ratio of the final pressure to the initial pressure is $\left(\gamma=\frac{\mathbf{C}_{\mathrm{P}}}{\mathbf{C}_{\mathrm{V}}}\right)$
1 $4: 1$
2 $8: 1$
3 $1: 16$
4 $1: 8$
Explanation:
B In an adiabatic process, the energy transfer from the thermodynamic system to surrounding is only in the form of work i.e. there is no transfer of heat and matter in an adiabatic process. For adiabatic process, $\mathrm{PV}$ is constant. $\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}$ $\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)^{\gamma}=\left(\frac{\mathrm{V} / 4}{\mathrm{~V}}\right)^{1.5}=\frac{1}{4^{3 / 2}}=\frac{1}{8}$ $\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{8}{1}$