148367
A gas at temperature $27^{\circ} \mathrm{C}$ and pressure 30 atm is allowed to expand to 1 atm pressure. If the volume becomes 10 times its initial volume, the final temperature becomes:
1 $100^{\circ} \mathrm{C}$
2 $373 \mathrm{~K}$
3 $373^{\circ} \mathrm{C}$
4 $-173^{\circ} \mathrm{C}$
Explanation:
D Given, Initial temperature $\left(\mathrm{T}_{1}\right)=27^{\circ} \mathrm{C}=300 \mathrm{~K}$ Initial pressure $\left(\mathrm{P}_{1}\right)=30 \mathrm{~atm}$ Final pressure $\left(\mathrm{P}_{2}\right)=1 \mathrm{~atm}$ Initial volume $=\mathrm{V}_{1}$ Final volume $=10 \mathrm{~V}_{1}$ We know that, Ideal gas equation, $\mathrm{PV}=\mathrm{nRT}$ $\frac{\mathrm{PV}}{\mathrm{T}}=\text { Constant }$ For state 1 and 2 $\therefore \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$ $\frac{30 \times \mathrm{V}_{1}}{300}=\frac{1 \times 10 \mathrm{~V}_{1}}{\mathrm{~T}_{2}}$ $\mathrm{T}_{2}=100 \mathrm{~K}$ $\therefore \mathrm{T}_{2}=(100-273)^{\circ} \mathrm{C}$ $\mathrm{T}_{2}=-173^{\circ} \mathrm{C}$
AP EAMCET(Medical)-1997
Thermodynamics
148369
In isochoric process :
1 $\Delta \mathrm{U}=\Delta \mathrm{Q}$
2 $\Delta \mathrm{Q}=\Delta \mathrm{W}$
3 $\Delta \mathrm{U}=\Delta \mathrm{W}$
4 None of these
Explanation:
A The process in which volume constant is called isochoric process. We know, $\mathrm{W}=\mathrm{PdV}$ $\mathrm{W}=0 \quad\{\Delta \mathrm{V}=0\}$ From first law of thermodynamic, $\because \quad \Delta \mathrm{Q}=\Delta \mathrm{U}+\mathrm{W} \quad\{\mathrm{W}=0\}$ $\Delta \mathrm{Q}=\Delta \mathrm{U}$
BCECE-2005
Thermodynamics
148371
A monoatomic gas is suddenly compressed to $\frac{1}{8}$ of its volume adiabatically. The pressure of the gas now to that of its original pressure is :
1 8 times
2 16 times
3 32 times
4 128 times
Explanation:
C Given, Initial volume of monoatomic gas $=\mathrm{V}_{1}$ Final volume of monoatomic gas $=\frac{\mathrm{V}_{1}}{8}$ Process is compressed adiabatically We Know that, $\gamma$ for monoatomic gas $=1.67$ $\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}$ $\mathrm{P}_{2}=\mathrm{P}_{1}\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma}$ $\mathrm{P}_{2}=\mathrm{P}_{1}\left(\frac{\mathrm{V}_{1}}{\frac{1}{8} \mathrm{~V}_{1}}\right)^{1.67}$ $\mathrm{P}_{2}=\mathrm{P}_{1}(8)^{1.67}$ $\mathrm{P}_{2}=32 \times \mathrm{P}_{1}$
AP EAMCET(Medical)-1998
Thermodynamics
148227
Which of the following statement is incorrect
1 In an adiabatic process the system is insulated from surroundings and the heat absorbed or released is zero.
2 In an isochoric process volume is variable
3 In isobaric process pressure is constant
4 In a cyclic process the system returns to initial state.
Explanation:
B In an isochoric Process Volume is constant. $\mathrm{V}_{1}=\mathrm{V}_{2}$
148367
A gas at temperature $27^{\circ} \mathrm{C}$ and pressure 30 atm is allowed to expand to 1 atm pressure. If the volume becomes 10 times its initial volume, the final temperature becomes:
1 $100^{\circ} \mathrm{C}$
2 $373 \mathrm{~K}$
3 $373^{\circ} \mathrm{C}$
4 $-173^{\circ} \mathrm{C}$
Explanation:
D Given, Initial temperature $\left(\mathrm{T}_{1}\right)=27^{\circ} \mathrm{C}=300 \mathrm{~K}$ Initial pressure $\left(\mathrm{P}_{1}\right)=30 \mathrm{~atm}$ Final pressure $\left(\mathrm{P}_{2}\right)=1 \mathrm{~atm}$ Initial volume $=\mathrm{V}_{1}$ Final volume $=10 \mathrm{~V}_{1}$ We know that, Ideal gas equation, $\mathrm{PV}=\mathrm{nRT}$ $\frac{\mathrm{PV}}{\mathrm{T}}=\text { Constant }$ For state 1 and 2 $\therefore \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$ $\frac{30 \times \mathrm{V}_{1}}{300}=\frac{1 \times 10 \mathrm{~V}_{1}}{\mathrm{~T}_{2}}$ $\mathrm{T}_{2}=100 \mathrm{~K}$ $\therefore \mathrm{T}_{2}=(100-273)^{\circ} \mathrm{C}$ $\mathrm{T}_{2}=-173^{\circ} \mathrm{C}$
AP EAMCET(Medical)-1997
Thermodynamics
148369
In isochoric process :
1 $\Delta \mathrm{U}=\Delta \mathrm{Q}$
2 $\Delta \mathrm{Q}=\Delta \mathrm{W}$
3 $\Delta \mathrm{U}=\Delta \mathrm{W}$
4 None of these
Explanation:
A The process in which volume constant is called isochoric process. We know, $\mathrm{W}=\mathrm{PdV}$ $\mathrm{W}=0 \quad\{\Delta \mathrm{V}=0\}$ From first law of thermodynamic, $\because \quad \Delta \mathrm{Q}=\Delta \mathrm{U}+\mathrm{W} \quad\{\mathrm{W}=0\}$ $\Delta \mathrm{Q}=\Delta \mathrm{U}$
BCECE-2005
Thermodynamics
148371
A monoatomic gas is suddenly compressed to $\frac{1}{8}$ of its volume adiabatically. The pressure of the gas now to that of its original pressure is :
1 8 times
2 16 times
3 32 times
4 128 times
Explanation:
C Given, Initial volume of monoatomic gas $=\mathrm{V}_{1}$ Final volume of monoatomic gas $=\frac{\mathrm{V}_{1}}{8}$ Process is compressed adiabatically We Know that, $\gamma$ for monoatomic gas $=1.67$ $\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}$ $\mathrm{P}_{2}=\mathrm{P}_{1}\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma}$ $\mathrm{P}_{2}=\mathrm{P}_{1}\left(\frac{\mathrm{V}_{1}}{\frac{1}{8} \mathrm{~V}_{1}}\right)^{1.67}$ $\mathrm{P}_{2}=\mathrm{P}_{1}(8)^{1.67}$ $\mathrm{P}_{2}=32 \times \mathrm{P}_{1}$
AP EAMCET(Medical)-1998
Thermodynamics
148227
Which of the following statement is incorrect
1 In an adiabatic process the system is insulated from surroundings and the heat absorbed or released is zero.
2 In an isochoric process volume is variable
3 In isobaric process pressure is constant
4 In a cyclic process the system returns to initial state.
Explanation:
B In an isochoric Process Volume is constant. $\mathrm{V}_{1}=\mathrm{V}_{2}$
148367
A gas at temperature $27^{\circ} \mathrm{C}$ and pressure 30 atm is allowed to expand to 1 atm pressure. If the volume becomes 10 times its initial volume, the final temperature becomes:
1 $100^{\circ} \mathrm{C}$
2 $373 \mathrm{~K}$
3 $373^{\circ} \mathrm{C}$
4 $-173^{\circ} \mathrm{C}$
Explanation:
D Given, Initial temperature $\left(\mathrm{T}_{1}\right)=27^{\circ} \mathrm{C}=300 \mathrm{~K}$ Initial pressure $\left(\mathrm{P}_{1}\right)=30 \mathrm{~atm}$ Final pressure $\left(\mathrm{P}_{2}\right)=1 \mathrm{~atm}$ Initial volume $=\mathrm{V}_{1}$ Final volume $=10 \mathrm{~V}_{1}$ We know that, Ideal gas equation, $\mathrm{PV}=\mathrm{nRT}$ $\frac{\mathrm{PV}}{\mathrm{T}}=\text { Constant }$ For state 1 and 2 $\therefore \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$ $\frac{30 \times \mathrm{V}_{1}}{300}=\frac{1 \times 10 \mathrm{~V}_{1}}{\mathrm{~T}_{2}}$ $\mathrm{T}_{2}=100 \mathrm{~K}$ $\therefore \mathrm{T}_{2}=(100-273)^{\circ} \mathrm{C}$ $\mathrm{T}_{2}=-173^{\circ} \mathrm{C}$
AP EAMCET(Medical)-1997
Thermodynamics
148369
In isochoric process :
1 $\Delta \mathrm{U}=\Delta \mathrm{Q}$
2 $\Delta \mathrm{Q}=\Delta \mathrm{W}$
3 $\Delta \mathrm{U}=\Delta \mathrm{W}$
4 None of these
Explanation:
A The process in which volume constant is called isochoric process. We know, $\mathrm{W}=\mathrm{PdV}$ $\mathrm{W}=0 \quad\{\Delta \mathrm{V}=0\}$ From first law of thermodynamic, $\because \quad \Delta \mathrm{Q}=\Delta \mathrm{U}+\mathrm{W} \quad\{\mathrm{W}=0\}$ $\Delta \mathrm{Q}=\Delta \mathrm{U}$
BCECE-2005
Thermodynamics
148371
A monoatomic gas is suddenly compressed to $\frac{1}{8}$ of its volume adiabatically. The pressure of the gas now to that of its original pressure is :
1 8 times
2 16 times
3 32 times
4 128 times
Explanation:
C Given, Initial volume of monoatomic gas $=\mathrm{V}_{1}$ Final volume of monoatomic gas $=\frac{\mathrm{V}_{1}}{8}$ Process is compressed adiabatically We Know that, $\gamma$ for monoatomic gas $=1.67$ $\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}$ $\mathrm{P}_{2}=\mathrm{P}_{1}\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma}$ $\mathrm{P}_{2}=\mathrm{P}_{1}\left(\frac{\mathrm{V}_{1}}{\frac{1}{8} \mathrm{~V}_{1}}\right)^{1.67}$ $\mathrm{P}_{2}=\mathrm{P}_{1}(8)^{1.67}$ $\mathrm{P}_{2}=32 \times \mathrm{P}_{1}$
AP EAMCET(Medical)-1998
Thermodynamics
148227
Which of the following statement is incorrect
1 In an adiabatic process the system is insulated from surroundings and the heat absorbed or released is zero.
2 In an isochoric process volume is variable
3 In isobaric process pressure is constant
4 In a cyclic process the system returns to initial state.
Explanation:
B In an isochoric Process Volume is constant. $\mathrm{V}_{1}=\mathrm{V}_{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Thermodynamics
148367
A gas at temperature $27^{\circ} \mathrm{C}$ and pressure 30 atm is allowed to expand to 1 atm pressure. If the volume becomes 10 times its initial volume, the final temperature becomes:
1 $100^{\circ} \mathrm{C}$
2 $373 \mathrm{~K}$
3 $373^{\circ} \mathrm{C}$
4 $-173^{\circ} \mathrm{C}$
Explanation:
D Given, Initial temperature $\left(\mathrm{T}_{1}\right)=27^{\circ} \mathrm{C}=300 \mathrm{~K}$ Initial pressure $\left(\mathrm{P}_{1}\right)=30 \mathrm{~atm}$ Final pressure $\left(\mathrm{P}_{2}\right)=1 \mathrm{~atm}$ Initial volume $=\mathrm{V}_{1}$ Final volume $=10 \mathrm{~V}_{1}$ We know that, Ideal gas equation, $\mathrm{PV}=\mathrm{nRT}$ $\frac{\mathrm{PV}}{\mathrm{T}}=\text { Constant }$ For state 1 and 2 $\therefore \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$ $\frac{30 \times \mathrm{V}_{1}}{300}=\frac{1 \times 10 \mathrm{~V}_{1}}{\mathrm{~T}_{2}}$ $\mathrm{T}_{2}=100 \mathrm{~K}$ $\therefore \mathrm{T}_{2}=(100-273)^{\circ} \mathrm{C}$ $\mathrm{T}_{2}=-173^{\circ} \mathrm{C}$
AP EAMCET(Medical)-1997
Thermodynamics
148369
In isochoric process :
1 $\Delta \mathrm{U}=\Delta \mathrm{Q}$
2 $\Delta \mathrm{Q}=\Delta \mathrm{W}$
3 $\Delta \mathrm{U}=\Delta \mathrm{W}$
4 None of these
Explanation:
A The process in which volume constant is called isochoric process. We know, $\mathrm{W}=\mathrm{PdV}$ $\mathrm{W}=0 \quad\{\Delta \mathrm{V}=0\}$ From first law of thermodynamic, $\because \quad \Delta \mathrm{Q}=\Delta \mathrm{U}+\mathrm{W} \quad\{\mathrm{W}=0\}$ $\Delta \mathrm{Q}=\Delta \mathrm{U}$
BCECE-2005
Thermodynamics
148371
A monoatomic gas is suddenly compressed to $\frac{1}{8}$ of its volume adiabatically. The pressure of the gas now to that of its original pressure is :
1 8 times
2 16 times
3 32 times
4 128 times
Explanation:
C Given, Initial volume of monoatomic gas $=\mathrm{V}_{1}$ Final volume of monoatomic gas $=\frac{\mathrm{V}_{1}}{8}$ Process is compressed adiabatically We Know that, $\gamma$ for monoatomic gas $=1.67$ $\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}$ $\mathrm{P}_{2}=\mathrm{P}_{1}\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma}$ $\mathrm{P}_{2}=\mathrm{P}_{1}\left(\frac{\mathrm{V}_{1}}{\frac{1}{8} \mathrm{~V}_{1}}\right)^{1.67}$ $\mathrm{P}_{2}=\mathrm{P}_{1}(8)^{1.67}$ $\mathrm{P}_{2}=32 \times \mathrm{P}_{1}$
AP EAMCET(Medical)-1998
Thermodynamics
148227
Which of the following statement is incorrect
1 In an adiabatic process the system is insulated from surroundings and the heat absorbed or released is zero.
2 In an isochoric process volume is variable
3 In isobaric process pressure is constant
4 In a cyclic process the system returns to initial state.
Explanation:
B In an isochoric Process Volume is constant. $\mathrm{V}_{1}=\mathrm{V}_{2}$