01. Change of State, Type of System
Thermodynamics

148205 $50 \mathrm{~g}$ ice at $0^{\circ} \mathrm{C}$ in insulator vessel, $50 \mathrm{~g}$ water of $100^{\circ} \mathrm{C}$ is mixed in it, then final temperature of the mixture is (neglect the heat loss)

1 $10^{\circ} \mathrm{C}$
2 $0^{\circ} \lt \lt \lt \mathrm{T}_{\mathrm{m}} \lt 20^{\circ} \mathrm{C}$
3 $20^{\circ} \mathrm{C}$
4 above $20^{\circ} \mathrm{C}$
Thermodynamics

148206 Heat energy absorbed by a system in going through a cyclic process shown in figure. The work done during the process is:

1 $10^{7} \pi \mathrm{J}$
2 $10^{4} \pi \mathrm{J}$
3 $10^{3} \pi \mathrm{J}$
4 $10^{2} \pi \mathrm{J}$
Thermodynamics

148207 The Entropy (S) of a black hole can be written as $S=\beta k_{B} A$, where $k_{B}$ is the Boltzmann constant and $A$ is the area of the black hole. Then $\beta$ has dimension of

1 $\mathrm{L}^{2}$
2 $\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-1}$
3 $\mathrm{L}^{-2}$
4 dimensionless
Thermodynamics

148209 Consider a ball of mass $100 \mathrm{~g}$ attached to one end of a spring $(k=800 \mathrm{~N} / \mathrm{m})$ and immersed in $0.5 \mathrm{~kg}$ water. Assume the complete system is in thermal equilibrium. The spring is now stretched to $20 \mathrm{~cm}$ and the mass is released so that it vibrates up and down. Estimate the change in temperature of water before the vibrations stop.
(Specific heat of the material of the ball $=400$ $\mathrm{J} / \mathrm{kg} \mathrm{K}$ specific heat of water $=\mathbf{4 2 0 0} \mathrm{J} / \mathrm{kg} / \mathrm{K}$ )

1 $8.2 \times 10^{-4} \mathrm{~K}$
2 $10^{-3} \mathrm{~K}$
3 $7.5 \times 10^{-3} \mathrm{~K}$
4 $10^{-3} \mathrm{~K}$
Thermodynamics

148210 A monoatomic gas at pressure $P$ and volume $V$ is suddenly compressed to one eighth of its original volume. The final pressure at constant entropy will be:

1 $\mathrm{P}$
2 $8 \mathrm{P}$
3 $32 \mathrm{P}$
4 $64 \mathrm{P}$
Thermodynamics

148205 $50 \mathrm{~g}$ ice at $0^{\circ} \mathrm{C}$ in insulator vessel, $50 \mathrm{~g}$ water of $100^{\circ} \mathrm{C}$ is mixed in it, then final temperature of the mixture is (neglect the heat loss)

1 $10^{\circ} \mathrm{C}$
2 $0^{\circ} \lt \lt \lt \mathrm{T}_{\mathrm{m}} \lt 20^{\circ} \mathrm{C}$
3 $20^{\circ} \mathrm{C}$
4 above $20^{\circ} \mathrm{C}$
Thermodynamics

148206 Heat energy absorbed by a system in going through a cyclic process shown in figure. The work done during the process is:

1 $10^{7} \pi \mathrm{J}$
2 $10^{4} \pi \mathrm{J}$
3 $10^{3} \pi \mathrm{J}$
4 $10^{2} \pi \mathrm{J}$
Thermodynamics

148207 The Entropy (S) of a black hole can be written as $S=\beta k_{B} A$, where $k_{B}$ is the Boltzmann constant and $A$ is the area of the black hole. Then $\beta$ has dimension of

1 $\mathrm{L}^{2}$
2 $\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-1}$
3 $\mathrm{L}^{-2}$
4 dimensionless
Thermodynamics

148209 Consider a ball of mass $100 \mathrm{~g}$ attached to one end of a spring $(k=800 \mathrm{~N} / \mathrm{m})$ and immersed in $0.5 \mathrm{~kg}$ water. Assume the complete system is in thermal equilibrium. The spring is now stretched to $20 \mathrm{~cm}$ and the mass is released so that it vibrates up and down. Estimate the change in temperature of water before the vibrations stop.
(Specific heat of the material of the ball $=400$ $\mathrm{J} / \mathrm{kg} \mathrm{K}$ specific heat of water $=\mathbf{4 2 0 0} \mathrm{J} / \mathrm{kg} / \mathrm{K}$ )

1 $8.2 \times 10^{-4} \mathrm{~K}$
2 $10^{-3} \mathrm{~K}$
3 $7.5 \times 10^{-3} \mathrm{~K}$
4 $10^{-3} \mathrm{~K}$
Thermodynamics

148210 A monoatomic gas at pressure $P$ and volume $V$ is suddenly compressed to one eighth of its original volume. The final pressure at constant entropy will be:

1 $\mathrm{P}$
2 $8 \mathrm{P}$
3 $32 \mathrm{P}$
4 $64 \mathrm{P}$
Thermodynamics

148205 $50 \mathrm{~g}$ ice at $0^{\circ} \mathrm{C}$ in insulator vessel, $50 \mathrm{~g}$ water of $100^{\circ} \mathrm{C}$ is mixed in it, then final temperature of the mixture is (neglect the heat loss)

1 $10^{\circ} \mathrm{C}$
2 $0^{\circ} \lt \lt \lt \mathrm{T}_{\mathrm{m}} \lt 20^{\circ} \mathrm{C}$
3 $20^{\circ} \mathrm{C}$
4 above $20^{\circ} \mathrm{C}$
Thermodynamics

148206 Heat energy absorbed by a system in going through a cyclic process shown in figure. The work done during the process is:

1 $10^{7} \pi \mathrm{J}$
2 $10^{4} \pi \mathrm{J}$
3 $10^{3} \pi \mathrm{J}$
4 $10^{2} \pi \mathrm{J}$
Thermodynamics

148207 The Entropy (S) of a black hole can be written as $S=\beta k_{B} A$, where $k_{B}$ is the Boltzmann constant and $A$ is the area of the black hole. Then $\beta$ has dimension of

1 $\mathrm{L}^{2}$
2 $\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-1}$
3 $\mathrm{L}^{-2}$
4 dimensionless
Thermodynamics

148209 Consider a ball of mass $100 \mathrm{~g}$ attached to one end of a spring $(k=800 \mathrm{~N} / \mathrm{m})$ and immersed in $0.5 \mathrm{~kg}$ water. Assume the complete system is in thermal equilibrium. The spring is now stretched to $20 \mathrm{~cm}$ and the mass is released so that it vibrates up and down. Estimate the change in temperature of water before the vibrations stop.
(Specific heat of the material of the ball $=400$ $\mathrm{J} / \mathrm{kg} \mathrm{K}$ specific heat of water $=\mathbf{4 2 0 0} \mathrm{J} / \mathrm{kg} / \mathrm{K}$ )

1 $8.2 \times 10^{-4} \mathrm{~K}$
2 $10^{-3} \mathrm{~K}$
3 $7.5 \times 10^{-3} \mathrm{~K}$
4 $10^{-3} \mathrm{~K}$
Thermodynamics

148210 A monoatomic gas at pressure $P$ and volume $V$ is suddenly compressed to one eighth of its original volume. The final pressure at constant entropy will be:

1 $\mathrm{P}$
2 $8 \mathrm{P}$
3 $32 \mathrm{P}$
4 $64 \mathrm{P}$
Thermodynamics

148205 $50 \mathrm{~g}$ ice at $0^{\circ} \mathrm{C}$ in insulator vessel, $50 \mathrm{~g}$ water of $100^{\circ} \mathrm{C}$ is mixed in it, then final temperature of the mixture is (neglect the heat loss)

1 $10^{\circ} \mathrm{C}$
2 $0^{\circ} \lt \lt \lt \mathrm{T}_{\mathrm{m}} \lt 20^{\circ} \mathrm{C}$
3 $20^{\circ} \mathrm{C}$
4 above $20^{\circ} \mathrm{C}$
Thermodynamics

148206 Heat energy absorbed by a system in going through a cyclic process shown in figure. The work done during the process is:

1 $10^{7} \pi \mathrm{J}$
2 $10^{4} \pi \mathrm{J}$
3 $10^{3} \pi \mathrm{J}$
4 $10^{2} \pi \mathrm{J}$
Thermodynamics

148207 The Entropy (S) of a black hole can be written as $S=\beta k_{B} A$, where $k_{B}$ is the Boltzmann constant and $A$ is the area of the black hole. Then $\beta$ has dimension of

1 $\mathrm{L}^{2}$
2 $\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-1}$
3 $\mathrm{L}^{-2}$
4 dimensionless
Thermodynamics

148209 Consider a ball of mass $100 \mathrm{~g}$ attached to one end of a spring $(k=800 \mathrm{~N} / \mathrm{m})$ and immersed in $0.5 \mathrm{~kg}$ water. Assume the complete system is in thermal equilibrium. The spring is now stretched to $20 \mathrm{~cm}$ and the mass is released so that it vibrates up and down. Estimate the change in temperature of water before the vibrations stop.
(Specific heat of the material of the ball $=400$ $\mathrm{J} / \mathrm{kg} \mathrm{K}$ specific heat of water $=\mathbf{4 2 0 0} \mathrm{J} / \mathrm{kg} / \mathrm{K}$ )

1 $8.2 \times 10^{-4} \mathrm{~K}$
2 $10^{-3} \mathrm{~K}$
3 $7.5 \times 10^{-3} \mathrm{~K}$
4 $10^{-3} \mathrm{~K}$
Thermodynamics

148210 A monoatomic gas at pressure $P$ and volume $V$ is suddenly compressed to one eighth of its original volume. The final pressure at constant entropy will be:

1 $\mathrm{P}$
2 $8 \mathrm{P}$
3 $32 \mathrm{P}$
4 $64 \mathrm{P}$
Thermodynamics

148205 $50 \mathrm{~g}$ ice at $0^{\circ} \mathrm{C}$ in insulator vessel, $50 \mathrm{~g}$ water of $100^{\circ} \mathrm{C}$ is mixed in it, then final temperature of the mixture is (neglect the heat loss)

1 $10^{\circ} \mathrm{C}$
2 $0^{\circ} \lt \lt \lt \mathrm{T}_{\mathrm{m}} \lt 20^{\circ} \mathrm{C}$
3 $20^{\circ} \mathrm{C}$
4 above $20^{\circ} \mathrm{C}$
Thermodynamics

148206 Heat energy absorbed by a system in going through a cyclic process shown in figure. The work done during the process is:

1 $10^{7} \pi \mathrm{J}$
2 $10^{4} \pi \mathrm{J}$
3 $10^{3} \pi \mathrm{J}$
4 $10^{2} \pi \mathrm{J}$
Thermodynamics

148207 The Entropy (S) of a black hole can be written as $S=\beta k_{B} A$, where $k_{B}$ is the Boltzmann constant and $A$ is the area of the black hole. Then $\beta$ has dimension of

1 $\mathrm{L}^{2}$
2 $\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-1}$
3 $\mathrm{L}^{-2}$
4 dimensionless
Thermodynamics

148209 Consider a ball of mass $100 \mathrm{~g}$ attached to one end of a spring $(k=800 \mathrm{~N} / \mathrm{m})$ and immersed in $0.5 \mathrm{~kg}$ water. Assume the complete system is in thermal equilibrium. The spring is now stretched to $20 \mathrm{~cm}$ and the mass is released so that it vibrates up and down. Estimate the change in temperature of water before the vibrations stop.
(Specific heat of the material of the ball $=400$ $\mathrm{J} / \mathrm{kg} \mathrm{K}$ specific heat of water $=\mathbf{4 2 0 0} \mathrm{J} / \mathrm{kg} / \mathrm{K}$ )

1 $8.2 \times 10^{-4} \mathrm{~K}$
2 $10^{-3} \mathrm{~K}$
3 $7.5 \times 10^{-3} \mathrm{~K}$
4 $10^{-3} \mathrm{~K}$
Thermodynamics

148210 A monoatomic gas at pressure $P$ and volume $V$ is suddenly compressed to one eighth of its original volume. The final pressure at constant entropy will be:

1 $\mathrm{P}$
2 $8 \mathrm{P}$
3 $32 \mathrm{P}$
4 $64 \mathrm{P}$