00. First and Zeroth Law of Thermodynamics
Thermodynamics

148077 Six moles of $\mathrm{O}_{2}$ gas is heated from $20^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ at constant volume. If specific heat capacity at constant pressure is $8 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$ and $R=8.31$ $\mathrm{J} / \mathrm{mol}-\mathrm{K}$, what is change in internal energy of gas?

1 $180 \mathrm{cal}$
2 $300 \mathrm{cal}$
3 $360 \mathrm{cal}$
4 $540 \mathrm{cal}$
Thermodynamics

148078 An ideal gas is taken from point $A$ to the point $B$, as shown in the $p-V$ diagram, keeping the temperature constant. The work done in the process is :

1 $\left(\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{B}}\right)\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right)$
2 $\frac{1}{2}\left(\mathrm{p}_{\mathrm{B}}-\mathrm{p}_{\mathrm{A}}\right)\left(\mathrm{V}_{\mathrm{B}}+\mathrm{V}_{\mathrm{A}}\right)$
3 $\frac{1}{2}\left(\mathrm{p}_{\mathrm{B}}-\mathrm{p}_{\mathrm{A}}\right)\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right)$
4 $\frac{1}{2}\left(\mathrm{p}_{\mathrm{A}}+\mathrm{p}_{\mathrm{B}}\right)\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right)$
Thermodynamics

148079 A system goes from $A$ to $B$ via two process $I$ and $I I$ as shown in the figure. If $\Delta \mathbf{U}_{1}$ and $\Delta \mathbf{U}_{2}$ are the changes in internal energies in the processes I and II respectively, then

1 $\Delta U_{1}=\Delta U_{2}$
2 $\Delta \mathrm{U}_{1}>\Delta \mathrm{U}_{2}$
3 $\Delta \mathrm{U}_{1} \lt \Delta \mathrm{U}_{2}$
4 $\Delta \mathrm{U}_{1} \neq \Delta \mathrm{U}_{2}$
Thermodynamics

148080 $306 \mathrm{~J}$ of heat is required to raise the temperature of 2 moles of an ideal gas at constant pressure from $25^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$. The amount of heat required to raise the temperature of the same gas through the same range at constant volume is

1 $306 \mathrm{~J}$
2 $153 \mathrm{~J}$
3 $140 \mathrm{~J}$
4 $80 \mathrm{~J}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermodynamics

148077 Six moles of $\mathrm{O}_{2}$ gas is heated from $20^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ at constant volume. If specific heat capacity at constant pressure is $8 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$ and $R=8.31$ $\mathrm{J} / \mathrm{mol}-\mathrm{K}$, what is change in internal energy of gas?

1 $180 \mathrm{cal}$
2 $300 \mathrm{cal}$
3 $360 \mathrm{cal}$
4 $540 \mathrm{cal}$
Thermodynamics

148078 An ideal gas is taken from point $A$ to the point $B$, as shown in the $p-V$ diagram, keeping the temperature constant. The work done in the process is :

1 $\left(\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{B}}\right)\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right)$
2 $\frac{1}{2}\left(\mathrm{p}_{\mathrm{B}}-\mathrm{p}_{\mathrm{A}}\right)\left(\mathrm{V}_{\mathrm{B}}+\mathrm{V}_{\mathrm{A}}\right)$
3 $\frac{1}{2}\left(\mathrm{p}_{\mathrm{B}}-\mathrm{p}_{\mathrm{A}}\right)\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right)$
4 $\frac{1}{2}\left(\mathrm{p}_{\mathrm{A}}+\mathrm{p}_{\mathrm{B}}\right)\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right)$
Thermodynamics

148079 A system goes from $A$ to $B$ via two process $I$ and $I I$ as shown in the figure. If $\Delta \mathbf{U}_{1}$ and $\Delta \mathbf{U}_{2}$ are the changes in internal energies in the processes I and II respectively, then

1 $\Delta U_{1}=\Delta U_{2}$
2 $\Delta \mathrm{U}_{1}>\Delta \mathrm{U}_{2}$
3 $\Delta \mathrm{U}_{1} \lt \Delta \mathrm{U}_{2}$
4 $\Delta \mathrm{U}_{1} \neq \Delta \mathrm{U}_{2}$
Thermodynamics

148080 $306 \mathrm{~J}$ of heat is required to raise the temperature of 2 moles of an ideal gas at constant pressure from $25^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$. The amount of heat required to raise the temperature of the same gas through the same range at constant volume is

1 $306 \mathrm{~J}$
2 $153 \mathrm{~J}$
3 $140 \mathrm{~J}$
4 $80 \mathrm{~J}$
Thermodynamics

148077 Six moles of $\mathrm{O}_{2}$ gas is heated from $20^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ at constant volume. If specific heat capacity at constant pressure is $8 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$ and $R=8.31$ $\mathrm{J} / \mathrm{mol}-\mathrm{K}$, what is change in internal energy of gas?

1 $180 \mathrm{cal}$
2 $300 \mathrm{cal}$
3 $360 \mathrm{cal}$
4 $540 \mathrm{cal}$
Thermodynamics

148078 An ideal gas is taken from point $A$ to the point $B$, as shown in the $p-V$ diagram, keeping the temperature constant. The work done in the process is :

1 $\left(\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{B}}\right)\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right)$
2 $\frac{1}{2}\left(\mathrm{p}_{\mathrm{B}}-\mathrm{p}_{\mathrm{A}}\right)\left(\mathrm{V}_{\mathrm{B}}+\mathrm{V}_{\mathrm{A}}\right)$
3 $\frac{1}{2}\left(\mathrm{p}_{\mathrm{B}}-\mathrm{p}_{\mathrm{A}}\right)\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right)$
4 $\frac{1}{2}\left(\mathrm{p}_{\mathrm{A}}+\mathrm{p}_{\mathrm{B}}\right)\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right)$
Thermodynamics

148079 A system goes from $A$ to $B$ via two process $I$ and $I I$ as shown in the figure. If $\Delta \mathbf{U}_{1}$ and $\Delta \mathbf{U}_{2}$ are the changes in internal energies in the processes I and II respectively, then

1 $\Delta U_{1}=\Delta U_{2}$
2 $\Delta \mathrm{U}_{1}>\Delta \mathrm{U}_{2}$
3 $\Delta \mathrm{U}_{1} \lt \Delta \mathrm{U}_{2}$
4 $\Delta \mathrm{U}_{1} \neq \Delta \mathrm{U}_{2}$
Thermodynamics

148080 $306 \mathrm{~J}$ of heat is required to raise the temperature of 2 moles of an ideal gas at constant pressure from $25^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$. The amount of heat required to raise the temperature of the same gas through the same range at constant volume is

1 $306 \mathrm{~J}$
2 $153 \mathrm{~J}$
3 $140 \mathrm{~J}$
4 $80 \mathrm{~J}$
Thermodynamics

148077 Six moles of $\mathrm{O}_{2}$ gas is heated from $20^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ at constant volume. If specific heat capacity at constant pressure is $8 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$ and $R=8.31$ $\mathrm{J} / \mathrm{mol}-\mathrm{K}$, what is change in internal energy of gas?

1 $180 \mathrm{cal}$
2 $300 \mathrm{cal}$
3 $360 \mathrm{cal}$
4 $540 \mathrm{cal}$
Thermodynamics

148078 An ideal gas is taken from point $A$ to the point $B$, as shown in the $p-V$ diagram, keeping the temperature constant. The work done in the process is :

1 $\left(\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{B}}\right)\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right)$
2 $\frac{1}{2}\left(\mathrm{p}_{\mathrm{B}}-\mathrm{p}_{\mathrm{A}}\right)\left(\mathrm{V}_{\mathrm{B}}+\mathrm{V}_{\mathrm{A}}\right)$
3 $\frac{1}{2}\left(\mathrm{p}_{\mathrm{B}}-\mathrm{p}_{\mathrm{A}}\right)\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right)$
4 $\frac{1}{2}\left(\mathrm{p}_{\mathrm{A}}+\mathrm{p}_{\mathrm{B}}\right)\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right)$
Thermodynamics

148079 A system goes from $A$ to $B$ via two process $I$ and $I I$ as shown in the figure. If $\Delta \mathbf{U}_{1}$ and $\Delta \mathbf{U}_{2}$ are the changes in internal energies in the processes I and II respectively, then

1 $\Delta U_{1}=\Delta U_{2}$
2 $\Delta \mathrm{U}_{1}>\Delta \mathrm{U}_{2}$
3 $\Delta \mathrm{U}_{1} \lt \Delta \mathrm{U}_{2}$
4 $\Delta \mathrm{U}_{1} \neq \Delta \mathrm{U}_{2}$
Thermodynamics

148080 $306 \mathrm{~J}$ of heat is required to raise the temperature of 2 moles of an ideal gas at constant pressure from $25^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$. The amount of heat required to raise the temperature of the same gas through the same range at constant volume is

1 $306 \mathrm{~J}$
2 $153 \mathrm{~J}$
3 $140 \mathrm{~J}$
4 $80 \mathrm{~J}$