02. Specific heat capacity, Latent Heat and Calorimetry
Thermal Properties of Matter

146644 A lead bullet strikes against a steel plate with a velocity $200 \mathrm{~ms}^{-1}$. If the impact is perfectly inelastic and the heat produced is equally shared between the bullet and the target, then the rise in temperature of the bullet is (specific heat capacity of lead $=125 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{k}^{-1}$ )

1 $80^{\circ} \mathrm{C}$
2 $60^{\circ} \mathrm{C}$
3 $160^{\circ} \mathrm{C}$
4 $40^{\circ} \mathrm{C}$
5 $120^{\circ} \mathrm{C}$
Thermal Properties of Matter

146645 A $2 \mathrm{~kg}$ copper block is heated to $500^{\circ} \mathrm{C}$ and then it is placed on a large block of ice at $0^{\circ} \mathrm{C}$. If the specific heat capacity of copper is $400 \mathrm{~J}$ $\mathrm{kg}^{-1}{ }^{\circ} \mathbf{C}^{-1}$ and latent heat of fusion of water is $3.5 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$, the amount of ice that can melt is :

1 $7 / 8 \mathrm{~kg}$
2 $7 / 5 \mathrm{~kg}$
3 $8 / 7 \mathrm{~kg}$
4 $5 / 7 \mathrm{~kg}$
5 $7 / 3 \mathrm{~kg}$
Thermal Properties of Matter

146646 The temperature of equal masses of three different liquids $A, B$ and $C$ are $12^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ respectively. The temperature when $\mathrm{A}$ and $B$ are mixed is $16^{\circ} \mathrm{C}$ and when $B$ and $C$ are mixed is $23^{\circ} \mathrm{C}$. The temperature when $A$ and $C$ are mixed is:

1 $18.2^{\circ} \mathrm{C}$
2 $22^{\circ} \mathrm{C}$
3 $20.2^{\circ} \mathrm{C}$
4 $24.2^{\circ} \mathrm{C}$
5 $20.8^{\circ} \mathrm{C}$
Thermal Properties of Matter

146647 If a gas has ' $n$ ' degrees of freedom, the ratio of the specific heats $\gamma$ of the gas is

1 $\frac{1+n}{2}$
2 $1+\frac{n}{2}$
3 $1+\frac{1}{\mathrm{n}}$
4 $1+\frac{2}{\mathrm{n}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermal Properties of Matter

146644 A lead bullet strikes against a steel plate with a velocity $200 \mathrm{~ms}^{-1}$. If the impact is perfectly inelastic and the heat produced is equally shared between the bullet and the target, then the rise in temperature of the bullet is (specific heat capacity of lead $=125 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{k}^{-1}$ )

1 $80^{\circ} \mathrm{C}$
2 $60^{\circ} \mathrm{C}$
3 $160^{\circ} \mathrm{C}$
4 $40^{\circ} \mathrm{C}$
5 $120^{\circ} \mathrm{C}$
Thermal Properties of Matter

146645 A $2 \mathrm{~kg}$ copper block is heated to $500^{\circ} \mathrm{C}$ and then it is placed on a large block of ice at $0^{\circ} \mathrm{C}$. If the specific heat capacity of copper is $400 \mathrm{~J}$ $\mathrm{kg}^{-1}{ }^{\circ} \mathbf{C}^{-1}$ and latent heat of fusion of water is $3.5 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$, the amount of ice that can melt is :

1 $7 / 8 \mathrm{~kg}$
2 $7 / 5 \mathrm{~kg}$
3 $8 / 7 \mathrm{~kg}$
4 $5 / 7 \mathrm{~kg}$
5 $7 / 3 \mathrm{~kg}$
Thermal Properties of Matter

146646 The temperature of equal masses of three different liquids $A, B$ and $C$ are $12^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ respectively. The temperature when $\mathrm{A}$ and $B$ are mixed is $16^{\circ} \mathrm{C}$ and when $B$ and $C$ are mixed is $23^{\circ} \mathrm{C}$. The temperature when $A$ and $C$ are mixed is:

1 $18.2^{\circ} \mathrm{C}$
2 $22^{\circ} \mathrm{C}$
3 $20.2^{\circ} \mathrm{C}$
4 $24.2^{\circ} \mathrm{C}$
5 $20.8^{\circ} \mathrm{C}$
Thermal Properties of Matter

146647 If a gas has ' $n$ ' degrees of freedom, the ratio of the specific heats $\gamma$ of the gas is

1 $\frac{1+n}{2}$
2 $1+\frac{n}{2}$
3 $1+\frac{1}{\mathrm{n}}$
4 $1+\frac{2}{\mathrm{n}}$
Thermal Properties of Matter

146644 A lead bullet strikes against a steel plate with a velocity $200 \mathrm{~ms}^{-1}$. If the impact is perfectly inelastic and the heat produced is equally shared between the bullet and the target, then the rise in temperature of the bullet is (specific heat capacity of lead $=125 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{k}^{-1}$ )

1 $80^{\circ} \mathrm{C}$
2 $60^{\circ} \mathrm{C}$
3 $160^{\circ} \mathrm{C}$
4 $40^{\circ} \mathrm{C}$
5 $120^{\circ} \mathrm{C}$
Thermal Properties of Matter

146645 A $2 \mathrm{~kg}$ copper block is heated to $500^{\circ} \mathrm{C}$ and then it is placed on a large block of ice at $0^{\circ} \mathrm{C}$. If the specific heat capacity of copper is $400 \mathrm{~J}$ $\mathrm{kg}^{-1}{ }^{\circ} \mathbf{C}^{-1}$ and latent heat of fusion of water is $3.5 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$, the amount of ice that can melt is :

1 $7 / 8 \mathrm{~kg}$
2 $7 / 5 \mathrm{~kg}$
3 $8 / 7 \mathrm{~kg}$
4 $5 / 7 \mathrm{~kg}$
5 $7 / 3 \mathrm{~kg}$
Thermal Properties of Matter

146646 The temperature of equal masses of three different liquids $A, B$ and $C$ are $12^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ respectively. The temperature when $\mathrm{A}$ and $B$ are mixed is $16^{\circ} \mathrm{C}$ and when $B$ and $C$ are mixed is $23^{\circ} \mathrm{C}$. The temperature when $A$ and $C$ are mixed is:

1 $18.2^{\circ} \mathrm{C}$
2 $22^{\circ} \mathrm{C}$
3 $20.2^{\circ} \mathrm{C}$
4 $24.2^{\circ} \mathrm{C}$
5 $20.8^{\circ} \mathrm{C}$
Thermal Properties of Matter

146647 If a gas has ' $n$ ' degrees of freedom, the ratio of the specific heats $\gamma$ of the gas is

1 $\frac{1+n}{2}$
2 $1+\frac{n}{2}$
3 $1+\frac{1}{\mathrm{n}}$
4 $1+\frac{2}{\mathrm{n}}$
Thermal Properties of Matter

146644 A lead bullet strikes against a steel plate with a velocity $200 \mathrm{~ms}^{-1}$. If the impact is perfectly inelastic and the heat produced is equally shared between the bullet and the target, then the rise in temperature of the bullet is (specific heat capacity of lead $=125 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{k}^{-1}$ )

1 $80^{\circ} \mathrm{C}$
2 $60^{\circ} \mathrm{C}$
3 $160^{\circ} \mathrm{C}$
4 $40^{\circ} \mathrm{C}$
5 $120^{\circ} \mathrm{C}$
Thermal Properties of Matter

146645 A $2 \mathrm{~kg}$ copper block is heated to $500^{\circ} \mathrm{C}$ and then it is placed on a large block of ice at $0^{\circ} \mathrm{C}$. If the specific heat capacity of copper is $400 \mathrm{~J}$ $\mathrm{kg}^{-1}{ }^{\circ} \mathbf{C}^{-1}$ and latent heat of fusion of water is $3.5 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$, the amount of ice that can melt is :

1 $7 / 8 \mathrm{~kg}$
2 $7 / 5 \mathrm{~kg}$
3 $8 / 7 \mathrm{~kg}$
4 $5 / 7 \mathrm{~kg}$
5 $7 / 3 \mathrm{~kg}$
Thermal Properties of Matter

146646 The temperature of equal masses of three different liquids $A, B$ and $C$ are $12^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ respectively. The temperature when $\mathrm{A}$ and $B$ are mixed is $16^{\circ} \mathrm{C}$ and when $B$ and $C$ are mixed is $23^{\circ} \mathrm{C}$. The temperature when $A$ and $C$ are mixed is:

1 $18.2^{\circ} \mathrm{C}$
2 $22^{\circ} \mathrm{C}$
3 $20.2^{\circ} \mathrm{C}$
4 $24.2^{\circ} \mathrm{C}$
5 $20.8^{\circ} \mathrm{C}$
Thermal Properties of Matter

146647 If a gas has ' $n$ ' degrees of freedom, the ratio of the specific heats $\gamma$ of the gas is

1 $\frac{1+n}{2}$
2 $1+\frac{n}{2}$
3 $1+\frac{1}{\mathrm{n}}$
4 $1+\frac{2}{\mathrm{n}}$