01. Thermal Expansion (Linear, Area and Volume Expansion)
Thermal Properties of Matter

146556 For a perfect gas, if $\alpha, \beta$ are the volume and pressure coefficients of expansions, then

1 $\alpha=\beta$
2 $\alpha>\beta$
3 $\alpha \lt \beta$
4 $\alpha>\beta, \alpha \lt \beta$
Thermal Properties of Matter

146557 The relation between the coefficient of real expansion $\left(\gamma_{\mathrm{r}}\right)$ and coefficient of apparent expansion $\left(\gamma_{\mathrm{a}}\right)$ of a liquid and the coefficient of linear expansion $\left(\alpha_{g}\right)$ of the material of the container is

1 $\gamma_{\mathrm{r}}=\alpha_{\mathrm{g}}+\gamma_{\mathrm{a}}$
2 $\gamma_{\mathrm{r}}=\alpha_{\mathrm{g}}+3 \gamma_{\mathrm{a}}$
3 $\gamma_{\mathrm{r}}=3 \alpha_{\mathrm{g}}+\gamma_{\mathrm{a}}$
4 $\gamma_{\mathrm{r}}=3\left(\alpha_{\mathrm{g}}+\gamma_{\mathrm{a}}\right)$
Thermal Properties of Matter

146558 A steel scale measures the length of a copper wire as $80.0 \mathrm{~cm}$, when both are at $20^{\circ} \mathrm{C}$, the calibration temperature for the scale. What would the scale read for the length of the wire both are at $40^{\circ} \mathrm{C}$ ?
Given, $\alpha$ for steel $=11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $\alpha$ for $\mathrm{Cu}$ $=17 \times 10^{-6} /{ }^{\circ} \mathrm{C}$

1 $80.0096 \mathrm{~cm}$
2 $80.0272 \mathrm{~cm}$
3 $1 \mathrm{~cm}$
4 $25.2 \mathrm{~cm}$
Thermal Properties of Matter

146559 A metre scale made of steel reads accurately at $25^{\circ} \mathrm{C}$. Suppose in an experiment an accuracy of $0.06 \mathrm{~mm}$ in $1 \mathrm{~m}$ is required, the range of temperature in which the experiment can be performed with this metre scale is (coefficient of linear expansion of steel is $11 \times 10^{-6} /{ }^{0} \mathrm{C}$ )

1 $19{ }^{\circ} \mathrm{C}$ to $31{ }^{\circ} \mathrm{C}$
2 $25^{\circ} \mathrm{C}$ to $32{ }^{\circ} \mathrm{C}$
3 $18{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$
4 $18{ }^{\circ} \mathrm{C}$ to $32{ }^{\circ} \mathrm{C}$
Thermal Properties of Matter

146556 For a perfect gas, if $\alpha, \beta$ are the volume and pressure coefficients of expansions, then

1 $\alpha=\beta$
2 $\alpha>\beta$
3 $\alpha \lt \beta$
4 $\alpha>\beta, \alpha \lt \beta$
Thermal Properties of Matter

146557 The relation between the coefficient of real expansion $\left(\gamma_{\mathrm{r}}\right)$ and coefficient of apparent expansion $\left(\gamma_{\mathrm{a}}\right)$ of a liquid and the coefficient of linear expansion $\left(\alpha_{g}\right)$ of the material of the container is

1 $\gamma_{\mathrm{r}}=\alpha_{\mathrm{g}}+\gamma_{\mathrm{a}}$
2 $\gamma_{\mathrm{r}}=\alpha_{\mathrm{g}}+3 \gamma_{\mathrm{a}}$
3 $\gamma_{\mathrm{r}}=3 \alpha_{\mathrm{g}}+\gamma_{\mathrm{a}}$
4 $\gamma_{\mathrm{r}}=3\left(\alpha_{\mathrm{g}}+\gamma_{\mathrm{a}}\right)$
Thermal Properties of Matter

146558 A steel scale measures the length of a copper wire as $80.0 \mathrm{~cm}$, when both are at $20^{\circ} \mathrm{C}$, the calibration temperature for the scale. What would the scale read for the length of the wire both are at $40^{\circ} \mathrm{C}$ ?
Given, $\alpha$ for steel $=11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $\alpha$ for $\mathrm{Cu}$ $=17 \times 10^{-6} /{ }^{\circ} \mathrm{C}$

1 $80.0096 \mathrm{~cm}$
2 $80.0272 \mathrm{~cm}$
3 $1 \mathrm{~cm}$
4 $25.2 \mathrm{~cm}$
Thermal Properties of Matter

146559 A metre scale made of steel reads accurately at $25^{\circ} \mathrm{C}$. Suppose in an experiment an accuracy of $0.06 \mathrm{~mm}$ in $1 \mathrm{~m}$ is required, the range of temperature in which the experiment can be performed with this metre scale is (coefficient of linear expansion of steel is $11 \times 10^{-6} /{ }^{0} \mathrm{C}$ )

1 $19{ }^{\circ} \mathrm{C}$ to $31{ }^{\circ} \mathrm{C}$
2 $25^{\circ} \mathrm{C}$ to $32{ }^{\circ} \mathrm{C}$
3 $18{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$
4 $18{ }^{\circ} \mathrm{C}$ to $32{ }^{\circ} \mathrm{C}$
Thermal Properties of Matter

146556 For a perfect gas, if $\alpha, \beta$ are the volume and pressure coefficients of expansions, then

1 $\alpha=\beta$
2 $\alpha>\beta$
3 $\alpha \lt \beta$
4 $\alpha>\beta, \alpha \lt \beta$
Thermal Properties of Matter

146557 The relation between the coefficient of real expansion $\left(\gamma_{\mathrm{r}}\right)$ and coefficient of apparent expansion $\left(\gamma_{\mathrm{a}}\right)$ of a liquid and the coefficient of linear expansion $\left(\alpha_{g}\right)$ of the material of the container is

1 $\gamma_{\mathrm{r}}=\alpha_{\mathrm{g}}+\gamma_{\mathrm{a}}$
2 $\gamma_{\mathrm{r}}=\alpha_{\mathrm{g}}+3 \gamma_{\mathrm{a}}$
3 $\gamma_{\mathrm{r}}=3 \alpha_{\mathrm{g}}+\gamma_{\mathrm{a}}$
4 $\gamma_{\mathrm{r}}=3\left(\alpha_{\mathrm{g}}+\gamma_{\mathrm{a}}\right)$
Thermal Properties of Matter

146558 A steel scale measures the length of a copper wire as $80.0 \mathrm{~cm}$, when both are at $20^{\circ} \mathrm{C}$, the calibration temperature for the scale. What would the scale read for the length of the wire both are at $40^{\circ} \mathrm{C}$ ?
Given, $\alpha$ for steel $=11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $\alpha$ for $\mathrm{Cu}$ $=17 \times 10^{-6} /{ }^{\circ} \mathrm{C}$

1 $80.0096 \mathrm{~cm}$
2 $80.0272 \mathrm{~cm}$
3 $1 \mathrm{~cm}$
4 $25.2 \mathrm{~cm}$
Thermal Properties of Matter

146559 A metre scale made of steel reads accurately at $25^{\circ} \mathrm{C}$. Suppose in an experiment an accuracy of $0.06 \mathrm{~mm}$ in $1 \mathrm{~m}$ is required, the range of temperature in which the experiment can be performed with this metre scale is (coefficient of linear expansion of steel is $11 \times 10^{-6} /{ }^{0} \mathrm{C}$ )

1 $19{ }^{\circ} \mathrm{C}$ to $31{ }^{\circ} \mathrm{C}$
2 $25^{\circ} \mathrm{C}$ to $32{ }^{\circ} \mathrm{C}$
3 $18{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$
4 $18{ }^{\circ} \mathrm{C}$ to $32{ }^{\circ} \mathrm{C}$
Thermal Properties of Matter

146556 For a perfect gas, if $\alpha, \beta$ are the volume and pressure coefficients of expansions, then

1 $\alpha=\beta$
2 $\alpha>\beta$
3 $\alpha \lt \beta$
4 $\alpha>\beta, \alpha \lt \beta$
Thermal Properties of Matter

146557 The relation between the coefficient of real expansion $\left(\gamma_{\mathrm{r}}\right)$ and coefficient of apparent expansion $\left(\gamma_{\mathrm{a}}\right)$ of a liquid and the coefficient of linear expansion $\left(\alpha_{g}\right)$ of the material of the container is

1 $\gamma_{\mathrm{r}}=\alpha_{\mathrm{g}}+\gamma_{\mathrm{a}}$
2 $\gamma_{\mathrm{r}}=\alpha_{\mathrm{g}}+3 \gamma_{\mathrm{a}}$
3 $\gamma_{\mathrm{r}}=3 \alpha_{\mathrm{g}}+\gamma_{\mathrm{a}}$
4 $\gamma_{\mathrm{r}}=3\left(\alpha_{\mathrm{g}}+\gamma_{\mathrm{a}}\right)$
Thermal Properties of Matter

146558 A steel scale measures the length of a copper wire as $80.0 \mathrm{~cm}$, when both are at $20^{\circ} \mathrm{C}$, the calibration temperature for the scale. What would the scale read for the length of the wire both are at $40^{\circ} \mathrm{C}$ ?
Given, $\alpha$ for steel $=11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $\alpha$ for $\mathrm{Cu}$ $=17 \times 10^{-6} /{ }^{\circ} \mathrm{C}$

1 $80.0096 \mathrm{~cm}$
2 $80.0272 \mathrm{~cm}$
3 $1 \mathrm{~cm}$
4 $25.2 \mathrm{~cm}$
Thermal Properties of Matter

146559 A metre scale made of steel reads accurately at $25^{\circ} \mathrm{C}$. Suppose in an experiment an accuracy of $0.06 \mathrm{~mm}$ in $1 \mathrm{~m}$ is required, the range of temperature in which the experiment can be performed with this metre scale is (coefficient of linear expansion of steel is $11 \times 10^{-6} /{ }^{0} \mathrm{C}$ )

1 $19{ }^{\circ} \mathrm{C}$ to $31{ }^{\circ} \mathrm{C}$
2 $25^{\circ} \mathrm{C}$ to $32{ }^{\circ} \mathrm{C}$
3 $18{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$
4 $18{ }^{\circ} \mathrm{C}$ to $32{ }^{\circ} \mathrm{C}$