01. Thermal Expansion (Linear, Area and Volume Expansion)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermal Properties of Matter

146520 A steel rod at $25^{\circ} \mathrm{C}$ is observed to be $1 \mathrm{~m}$ long when measured by another metal scale which is correct at $0^{\circ} \mathrm{C}$. The exact length of steel rod at $0^{\circ} \mathrm{C}$ is $\left(\alpha_{\text {stel }}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right.$ and $\alpha_{\text {metel }}$ $=\mathbf{2 0} \times 10^{-6} / \circ \mathrm{C}$ )

1 $1.00002 \mathrm{~m}$
2 $1.0002 \mathrm{~m}$
3 $0.998 \mathrm{~m}$
4 $0.9998 \mathrm{~m}$
Thermal Properties of Matter

146521 The pressure to be applied to the ends of a steel cylinder to keep its length constant upon raising its temperature by $100^{\circ} \mathrm{C}$ is (thermal expansion coefficient, $\alpha=11 \times 10^{-6} / \mathrm{K}$, Young's modulus $=200 \mathrm{GPa})$

1 $0.22 \times 10^{9} \mathrm{~Pa}$
2 $5.5 \times 10^{-6} \mathrm{~Pa}$
3 $0.22 \mathrm{~Pa}$
4 $55 \mathrm{~Pa}$
Thermal Properties of Matter

146522 The length of a metal wire is $L_{1}$ when the tension in it is $T_{1}$ and is $L_{2}$ when the tension is $T_{2}$. The natural length of wire is

1 $\mathrm{L}_{1} \mathrm{~L}_{2}$
2 $\sqrt{\mathrm{L}_{1} \mathrm{~L}_{2}}$
3 $\frac{\mathrm{L}_{1} \mathrm{~T}_{2}-\mathrm{L}_{2} \mathrm{~T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}$
4 $\frac{\mathrm{L}_{1} \mathrm{~T}_{2}+\mathrm{L}_{2} \mathrm{~T}_{1}}{\mathrm{~T}_{2}+\mathrm{T}_{1}}$
Thermal Properties of Matter

146523 A glass flask of volume one litre at $0^{\circ} \mathrm{C}$ is filled level full of mercury at this temperature. The flask and mercury are now heated to $100^{\circ} \mathrm{C}$. How much mercury will spill out, if coefficient of volume expansion of mercury is $1.82 \times 10^{-4} /{ }^{\circ} \mathrm{C}$ and linear expansion of glass is $0.1 \times 10^{-4} /{ }^{\circ} \mathrm{C}$, respectively?

1 $2.48 \times 10^{-2} \mathrm{~L}$
2 $1.52 \times 10^{-2} \mathrm{~L}$
3 $1.53 \times 10^{4} \mathrm{~L}$
4 $1.52 \times 10^{-4} \mathrm{~L}$
Thermal Properties of Matter

146520 A steel rod at $25^{\circ} \mathrm{C}$ is observed to be $1 \mathrm{~m}$ long when measured by another metal scale which is correct at $0^{\circ} \mathrm{C}$. The exact length of steel rod at $0^{\circ} \mathrm{C}$ is $\left(\alpha_{\text {stel }}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right.$ and $\alpha_{\text {metel }}$ $=\mathbf{2 0} \times 10^{-6} / \circ \mathrm{C}$ )

1 $1.00002 \mathrm{~m}$
2 $1.0002 \mathrm{~m}$
3 $0.998 \mathrm{~m}$
4 $0.9998 \mathrm{~m}$
Thermal Properties of Matter

146521 The pressure to be applied to the ends of a steel cylinder to keep its length constant upon raising its temperature by $100^{\circ} \mathrm{C}$ is (thermal expansion coefficient, $\alpha=11 \times 10^{-6} / \mathrm{K}$, Young's modulus $=200 \mathrm{GPa})$

1 $0.22 \times 10^{9} \mathrm{~Pa}$
2 $5.5 \times 10^{-6} \mathrm{~Pa}$
3 $0.22 \mathrm{~Pa}$
4 $55 \mathrm{~Pa}$
Thermal Properties of Matter

146522 The length of a metal wire is $L_{1}$ when the tension in it is $T_{1}$ and is $L_{2}$ when the tension is $T_{2}$. The natural length of wire is

1 $\mathrm{L}_{1} \mathrm{~L}_{2}$
2 $\sqrt{\mathrm{L}_{1} \mathrm{~L}_{2}}$
3 $\frac{\mathrm{L}_{1} \mathrm{~T}_{2}-\mathrm{L}_{2} \mathrm{~T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}$
4 $\frac{\mathrm{L}_{1} \mathrm{~T}_{2}+\mathrm{L}_{2} \mathrm{~T}_{1}}{\mathrm{~T}_{2}+\mathrm{T}_{1}}$
Thermal Properties of Matter

146523 A glass flask of volume one litre at $0^{\circ} \mathrm{C}$ is filled level full of mercury at this temperature. The flask and mercury are now heated to $100^{\circ} \mathrm{C}$. How much mercury will spill out, if coefficient of volume expansion of mercury is $1.82 \times 10^{-4} /{ }^{\circ} \mathrm{C}$ and linear expansion of glass is $0.1 \times 10^{-4} /{ }^{\circ} \mathrm{C}$, respectively?

1 $2.48 \times 10^{-2} \mathrm{~L}$
2 $1.52 \times 10^{-2} \mathrm{~L}$
3 $1.53 \times 10^{4} \mathrm{~L}$
4 $1.52 \times 10^{-4} \mathrm{~L}$
Thermal Properties of Matter

146520 A steel rod at $25^{\circ} \mathrm{C}$ is observed to be $1 \mathrm{~m}$ long when measured by another metal scale which is correct at $0^{\circ} \mathrm{C}$. The exact length of steel rod at $0^{\circ} \mathrm{C}$ is $\left(\alpha_{\text {stel }}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right.$ and $\alpha_{\text {metel }}$ $=\mathbf{2 0} \times 10^{-6} / \circ \mathrm{C}$ )

1 $1.00002 \mathrm{~m}$
2 $1.0002 \mathrm{~m}$
3 $0.998 \mathrm{~m}$
4 $0.9998 \mathrm{~m}$
Thermal Properties of Matter

146521 The pressure to be applied to the ends of a steel cylinder to keep its length constant upon raising its temperature by $100^{\circ} \mathrm{C}$ is (thermal expansion coefficient, $\alpha=11 \times 10^{-6} / \mathrm{K}$, Young's modulus $=200 \mathrm{GPa})$

1 $0.22 \times 10^{9} \mathrm{~Pa}$
2 $5.5 \times 10^{-6} \mathrm{~Pa}$
3 $0.22 \mathrm{~Pa}$
4 $55 \mathrm{~Pa}$
Thermal Properties of Matter

146522 The length of a metal wire is $L_{1}$ when the tension in it is $T_{1}$ and is $L_{2}$ when the tension is $T_{2}$. The natural length of wire is

1 $\mathrm{L}_{1} \mathrm{~L}_{2}$
2 $\sqrt{\mathrm{L}_{1} \mathrm{~L}_{2}}$
3 $\frac{\mathrm{L}_{1} \mathrm{~T}_{2}-\mathrm{L}_{2} \mathrm{~T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}$
4 $\frac{\mathrm{L}_{1} \mathrm{~T}_{2}+\mathrm{L}_{2} \mathrm{~T}_{1}}{\mathrm{~T}_{2}+\mathrm{T}_{1}}$
Thermal Properties of Matter

146523 A glass flask of volume one litre at $0^{\circ} \mathrm{C}$ is filled level full of mercury at this temperature. The flask and mercury are now heated to $100^{\circ} \mathrm{C}$. How much mercury will spill out, if coefficient of volume expansion of mercury is $1.82 \times 10^{-4} /{ }^{\circ} \mathrm{C}$ and linear expansion of glass is $0.1 \times 10^{-4} /{ }^{\circ} \mathrm{C}$, respectively?

1 $2.48 \times 10^{-2} \mathrm{~L}$
2 $1.52 \times 10^{-2} \mathrm{~L}$
3 $1.53 \times 10^{4} \mathrm{~L}$
4 $1.52 \times 10^{-4} \mathrm{~L}$
Thermal Properties of Matter

146520 A steel rod at $25^{\circ} \mathrm{C}$ is observed to be $1 \mathrm{~m}$ long when measured by another metal scale which is correct at $0^{\circ} \mathrm{C}$. The exact length of steel rod at $0^{\circ} \mathrm{C}$ is $\left(\alpha_{\text {stel }}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right.$ and $\alpha_{\text {metel }}$ $=\mathbf{2 0} \times 10^{-6} / \circ \mathrm{C}$ )

1 $1.00002 \mathrm{~m}$
2 $1.0002 \mathrm{~m}$
3 $0.998 \mathrm{~m}$
4 $0.9998 \mathrm{~m}$
Thermal Properties of Matter

146521 The pressure to be applied to the ends of a steel cylinder to keep its length constant upon raising its temperature by $100^{\circ} \mathrm{C}$ is (thermal expansion coefficient, $\alpha=11 \times 10^{-6} / \mathrm{K}$, Young's modulus $=200 \mathrm{GPa})$

1 $0.22 \times 10^{9} \mathrm{~Pa}$
2 $5.5 \times 10^{-6} \mathrm{~Pa}$
3 $0.22 \mathrm{~Pa}$
4 $55 \mathrm{~Pa}$
Thermal Properties of Matter

146522 The length of a metal wire is $L_{1}$ when the tension in it is $T_{1}$ and is $L_{2}$ when the tension is $T_{2}$. The natural length of wire is

1 $\mathrm{L}_{1} \mathrm{~L}_{2}$
2 $\sqrt{\mathrm{L}_{1} \mathrm{~L}_{2}}$
3 $\frac{\mathrm{L}_{1} \mathrm{~T}_{2}-\mathrm{L}_{2} \mathrm{~T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}$
4 $\frac{\mathrm{L}_{1} \mathrm{~T}_{2}+\mathrm{L}_{2} \mathrm{~T}_{1}}{\mathrm{~T}_{2}+\mathrm{T}_{1}}$
Thermal Properties of Matter

146523 A glass flask of volume one litre at $0^{\circ} \mathrm{C}$ is filled level full of mercury at this temperature. The flask and mercury are now heated to $100^{\circ} \mathrm{C}$. How much mercury will spill out, if coefficient of volume expansion of mercury is $1.82 \times 10^{-4} /{ }^{\circ} \mathrm{C}$ and linear expansion of glass is $0.1 \times 10^{-4} /{ }^{\circ} \mathrm{C}$, respectively?

1 $2.48 \times 10^{-2} \mathrm{~L}$
2 $1.52 \times 10^{-2} \mathrm{~L}$
3 $1.53 \times 10^{4} \mathrm{~L}$
4 $1.52 \times 10^{-4} \mathrm{~L}$