01. Thermal Expansion (Linear, Area and Volume Expansion)
Thermal Properties of Matter

146513 Two straight metallic strips each of thickness $\mathbf{t}$ and length $\ell$ are riveted together. Their coefficients of linear expansions are $\alpha_{1}$ and $\alpha_{2}$. If they are heated through temperature $\Delta T$, the bimetallic strip will bend to form an arc of radius

1 $\left.\mathrm{t} /\left\{\alpha_{1}+\alpha_{2}\right) \Delta \mathrm{T}\right\}$
2 $\mathrm{t} /\left\{\left(\alpha_{2}-\alpha_{1}\right) \Delta \mathrm{T}\right\}$
3 $\mathrm{t}\left(\alpha_{1}-\alpha_{2}\right) \Delta \mathrm{T}$
4 $\mathrm{t}\left(\alpha_{2}-\alpha_{1}\right) \Delta \mathrm{T}$
Thermal Properties of Matter

146514 A wire of cross- sectional area $3 \mathbf{m m}^{2}$ is first stretched between two fixed points at a temperature of $20^{\circ} \mathrm{C}$. Determine the tension when the temperature falls to $10^{\circ} \mathrm{C}$. Coefficient of linear expansion $\alpha=10^{-5_{0}} \mathrm{C}^{-1}$ and $Y=2 \times 10^{11}$ $\mathrm{N} / \mathbf{m}^{2}$

1 $20 \mathrm{~N}$
2 $30 \mathrm{~N}$
3 $60 \mathrm{~N}$
4 $120 \mathrm{~N}$
Thermal Properties of Matter

146517 When a copper sphere is heated, percentage change is

1 maximum in radius
2 maximum in volume
3 maximum in density
4 equal in radius, volume and density
Thermal Properties of Matter

146518 The area of a circular copper coin increases by $0.4 \%$ when its temperature is raised by $100^{\circ} \mathrm{C}$. The coefficient of linear expansion of the coin is:

1 $1 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
2 $2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
3 $3 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
4 $4 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
Thermal Properties of Matter

146519 A sheet of steel at $20^{\circ} \mathrm{C}$ has size as shown in figure below. If the co-efficient of linear expansion for steel is $\frac{3}{2}$ then what is the change in the area at $60^{\circ} \mathrm{C}$ ?

1 $0.84 \mathrm{~cm}^{2}$
2 $0.64 \mathrm{~cm}^{2}$
3 $0.24 \mathrm{~cm}^{2}$
4 $0.14 \mathrm{~cm}^{2}$
Thermal Properties of Matter

146513 Two straight metallic strips each of thickness $\mathbf{t}$ and length $\ell$ are riveted together. Their coefficients of linear expansions are $\alpha_{1}$ and $\alpha_{2}$. If they are heated through temperature $\Delta T$, the bimetallic strip will bend to form an arc of radius

1 $\left.\mathrm{t} /\left\{\alpha_{1}+\alpha_{2}\right) \Delta \mathrm{T}\right\}$
2 $\mathrm{t} /\left\{\left(\alpha_{2}-\alpha_{1}\right) \Delta \mathrm{T}\right\}$
3 $\mathrm{t}\left(\alpha_{1}-\alpha_{2}\right) \Delta \mathrm{T}$
4 $\mathrm{t}\left(\alpha_{2}-\alpha_{1}\right) \Delta \mathrm{T}$
Thermal Properties of Matter

146514 A wire of cross- sectional area $3 \mathbf{m m}^{2}$ is first stretched between two fixed points at a temperature of $20^{\circ} \mathrm{C}$. Determine the tension when the temperature falls to $10^{\circ} \mathrm{C}$. Coefficient of linear expansion $\alpha=10^{-5_{0}} \mathrm{C}^{-1}$ and $Y=2 \times 10^{11}$ $\mathrm{N} / \mathbf{m}^{2}$

1 $20 \mathrm{~N}$
2 $30 \mathrm{~N}$
3 $60 \mathrm{~N}$
4 $120 \mathrm{~N}$
Thermal Properties of Matter

146517 When a copper sphere is heated, percentage change is

1 maximum in radius
2 maximum in volume
3 maximum in density
4 equal in radius, volume and density
Thermal Properties of Matter

146518 The area of a circular copper coin increases by $0.4 \%$ when its temperature is raised by $100^{\circ} \mathrm{C}$. The coefficient of linear expansion of the coin is:

1 $1 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
2 $2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
3 $3 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
4 $4 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
Thermal Properties of Matter

146519 A sheet of steel at $20^{\circ} \mathrm{C}$ has size as shown in figure below. If the co-efficient of linear expansion for steel is $\frac{3}{2}$ then what is the change in the area at $60^{\circ} \mathrm{C}$ ?

1 $0.84 \mathrm{~cm}^{2}$
2 $0.64 \mathrm{~cm}^{2}$
3 $0.24 \mathrm{~cm}^{2}$
4 $0.14 \mathrm{~cm}^{2}$
Thermal Properties of Matter

146513 Two straight metallic strips each of thickness $\mathbf{t}$ and length $\ell$ are riveted together. Their coefficients of linear expansions are $\alpha_{1}$ and $\alpha_{2}$. If they are heated through temperature $\Delta T$, the bimetallic strip will bend to form an arc of radius

1 $\left.\mathrm{t} /\left\{\alpha_{1}+\alpha_{2}\right) \Delta \mathrm{T}\right\}$
2 $\mathrm{t} /\left\{\left(\alpha_{2}-\alpha_{1}\right) \Delta \mathrm{T}\right\}$
3 $\mathrm{t}\left(\alpha_{1}-\alpha_{2}\right) \Delta \mathrm{T}$
4 $\mathrm{t}\left(\alpha_{2}-\alpha_{1}\right) \Delta \mathrm{T}$
Thermal Properties of Matter

146514 A wire of cross- sectional area $3 \mathbf{m m}^{2}$ is first stretched between two fixed points at a temperature of $20^{\circ} \mathrm{C}$. Determine the tension when the temperature falls to $10^{\circ} \mathrm{C}$. Coefficient of linear expansion $\alpha=10^{-5_{0}} \mathrm{C}^{-1}$ and $Y=2 \times 10^{11}$ $\mathrm{N} / \mathbf{m}^{2}$

1 $20 \mathrm{~N}$
2 $30 \mathrm{~N}$
3 $60 \mathrm{~N}$
4 $120 \mathrm{~N}$
Thermal Properties of Matter

146517 When a copper sphere is heated, percentage change is

1 maximum in radius
2 maximum in volume
3 maximum in density
4 equal in radius, volume and density
Thermal Properties of Matter

146518 The area of a circular copper coin increases by $0.4 \%$ when its temperature is raised by $100^{\circ} \mathrm{C}$. The coefficient of linear expansion of the coin is:

1 $1 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
2 $2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
3 $3 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
4 $4 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
Thermal Properties of Matter

146519 A sheet of steel at $20^{\circ} \mathrm{C}$ has size as shown in figure below. If the co-efficient of linear expansion for steel is $\frac{3}{2}$ then what is the change in the area at $60^{\circ} \mathrm{C}$ ?

1 $0.84 \mathrm{~cm}^{2}$
2 $0.64 \mathrm{~cm}^{2}$
3 $0.24 \mathrm{~cm}^{2}$
4 $0.14 \mathrm{~cm}^{2}$
Thermal Properties of Matter

146513 Two straight metallic strips each of thickness $\mathbf{t}$ and length $\ell$ are riveted together. Their coefficients of linear expansions are $\alpha_{1}$ and $\alpha_{2}$. If they are heated through temperature $\Delta T$, the bimetallic strip will bend to form an arc of radius

1 $\left.\mathrm{t} /\left\{\alpha_{1}+\alpha_{2}\right) \Delta \mathrm{T}\right\}$
2 $\mathrm{t} /\left\{\left(\alpha_{2}-\alpha_{1}\right) \Delta \mathrm{T}\right\}$
3 $\mathrm{t}\left(\alpha_{1}-\alpha_{2}\right) \Delta \mathrm{T}$
4 $\mathrm{t}\left(\alpha_{2}-\alpha_{1}\right) \Delta \mathrm{T}$
Thermal Properties of Matter

146514 A wire of cross- sectional area $3 \mathbf{m m}^{2}$ is first stretched between two fixed points at a temperature of $20^{\circ} \mathrm{C}$. Determine the tension when the temperature falls to $10^{\circ} \mathrm{C}$. Coefficient of linear expansion $\alpha=10^{-5_{0}} \mathrm{C}^{-1}$ and $Y=2 \times 10^{11}$ $\mathrm{N} / \mathbf{m}^{2}$

1 $20 \mathrm{~N}$
2 $30 \mathrm{~N}$
3 $60 \mathrm{~N}$
4 $120 \mathrm{~N}$
Thermal Properties of Matter

146517 When a copper sphere is heated, percentage change is

1 maximum in radius
2 maximum in volume
3 maximum in density
4 equal in radius, volume and density
Thermal Properties of Matter

146518 The area of a circular copper coin increases by $0.4 \%$ when its temperature is raised by $100^{\circ} \mathrm{C}$. The coefficient of linear expansion of the coin is:

1 $1 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
2 $2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
3 $3 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
4 $4 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
Thermal Properties of Matter

146519 A sheet of steel at $20^{\circ} \mathrm{C}$ has size as shown in figure below. If the co-efficient of linear expansion for steel is $\frac{3}{2}$ then what is the change in the area at $60^{\circ} \mathrm{C}$ ?

1 $0.84 \mathrm{~cm}^{2}$
2 $0.64 \mathrm{~cm}^{2}$
3 $0.24 \mathrm{~cm}^{2}$
4 $0.14 \mathrm{~cm}^{2}$
Thermal Properties of Matter

146513 Two straight metallic strips each of thickness $\mathbf{t}$ and length $\ell$ are riveted together. Their coefficients of linear expansions are $\alpha_{1}$ and $\alpha_{2}$. If they are heated through temperature $\Delta T$, the bimetallic strip will bend to form an arc of radius

1 $\left.\mathrm{t} /\left\{\alpha_{1}+\alpha_{2}\right) \Delta \mathrm{T}\right\}$
2 $\mathrm{t} /\left\{\left(\alpha_{2}-\alpha_{1}\right) \Delta \mathrm{T}\right\}$
3 $\mathrm{t}\left(\alpha_{1}-\alpha_{2}\right) \Delta \mathrm{T}$
4 $\mathrm{t}\left(\alpha_{2}-\alpha_{1}\right) \Delta \mathrm{T}$
Thermal Properties of Matter

146514 A wire of cross- sectional area $3 \mathbf{m m}^{2}$ is first stretched between two fixed points at a temperature of $20^{\circ} \mathrm{C}$. Determine the tension when the temperature falls to $10^{\circ} \mathrm{C}$. Coefficient of linear expansion $\alpha=10^{-5_{0}} \mathrm{C}^{-1}$ and $Y=2 \times 10^{11}$ $\mathrm{N} / \mathbf{m}^{2}$

1 $20 \mathrm{~N}$
2 $30 \mathrm{~N}$
3 $60 \mathrm{~N}$
4 $120 \mathrm{~N}$
Thermal Properties of Matter

146517 When a copper sphere is heated, percentage change is

1 maximum in radius
2 maximum in volume
3 maximum in density
4 equal in radius, volume and density
Thermal Properties of Matter

146518 The area of a circular copper coin increases by $0.4 \%$ when its temperature is raised by $100^{\circ} \mathrm{C}$. The coefficient of linear expansion of the coin is:

1 $1 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
2 $2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
3 $3 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
4 $4 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
Thermal Properties of Matter

146519 A sheet of steel at $20^{\circ} \mathrm{C}$ has size as shown in figure below. If the co-efficient of linear expansion for steel is $\frac{3}{2}$ then what is the change in the area at $60^{\circ} \mathrm{C}$ ?

1 $0.84 \mathrm{~cm}^{2}$
2 $0.64 \mathrm{~cm}^{2}$
3 $0.24 \mathrm{~cm}^{2}$
4 $0.14 \mathrm{~cm}^{2}$