01. Thermal Expansion (Linear, Area and Volume Expansion)
Thermal Properties of Matter

146504 Heat flows through two rods having same temperature difference at the ends. One rod is of length $l_{1}$, radius $r_{1}$ and thermal conductivity $K_{1}$ and the other rod of $l_{2}, r_{2}$ and $K_{2}$. The heat flow rate through the two rods will be equal, if

1 $\mathrm{K}_{1} l_{2}=\mathrm{K}_{2} l_{1}$
2 $\mathrm{K}_{1} \mathrm{r}_{1}^{2}=\mathrm{K}_{2} l_{2}^{2}$
3 $\mathrm{K}_{1} l_{2} \mathrm{r}_{1}=\mathrm{K}_{2} l_{1} \mathrm{r}_{2}$
4 $\mathrm{K}_{1} l_{2} \mathrm{r}_{1}^{2}=\mathrm{K}_{2} l_{1} \mathrm{r}_{2}^{2}$
Thermal Properties of Matter

146506 A wire $3 \mathrm{~m}$ in length and $1 \mathrm{~mm}$ in diameter at $30^{\circ} \mathrm{C}$ is kept in a low temperature at $-170^{\circ} \mathrm{C}$ and is stretched by hanging a weight of $10 \mathrm{~kg}$ at one end. The change in length of the wire is : $\left[\mathrm{Y}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}\right.$ and $\alpha=1.2 \times 10^{-}$ $\left.{ }^{5} /{ }^{\circ} \mathrm{C}\right]$

1 $5.2 \mathrm{~mm}$
2 $2.5 \mathrm{~mm}$
3 $52 \mathrm{~mm}$
4 $25 \mathrm{~mm}$
Thermal Properties of Matter

146507 An iron bar of length $10 \mathrm{~m}$ is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. If the coefficient of linear thermal expansion of iron is $10 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, the increase in the length of bar is :

1 $0.5 \mathrm{~cm}$
2 $1.0 \mathrm{~cm}$
3 $1.5 \mathrm{~cm}$
4 $2.0 \mathrm{~cm}$
Thermal Properties of Matter

146508 Two rods of different materials having coefficients of thermal expansions $\alpha_{1}$ and $\alpha_{2}$ and Young's modulus $Y_{1}$ and $Y_{2}$ respectively are fixed between two rigid walls. The rod are heated, such that they undergo the same increase in temperature. There is no bending of rods. If $\alpha_{1} / \alpha_{2}=2 / 3$ and stresses developed in the two rods are equal, then $\frac{Y_{1}}{Y_{2}}$ is :

1 $3 / 2$
2 1
3 $2 / 3$
4 $1 / 2$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermal Properties of Matter

146504 Heat flows through two rods having same temperature difference at the ends. One rod is of length $l_{1}$, radius $r_{1}$ and thermal conductivity $K_{1}$ and the other rod of $l_{2}, r_{2}$ and $K_{2}$. The heat flow rate through the two rods will be equal, if

1 $\mathrm{K}_{1} l_{2}=\mathrm{K}_{2} l_{1}$
2 $\mathrm{K}_{1} \mathrm{r}_{1}^{2}=\mathrm{K}_{2} l_{2}^{2}$
3 $\mathrm{K}_{1} l_{2} \mathrm{r}_{1}=\mathrm{K}_{2} l_{1} \mathrm{r}_{2}$
4 $\mathrm{K}_{1} l_{2} \mathrm{r}_{1}^{2}=\mathrm{K}_{2} l_{1} \mathrm{r}_{2}^{2}$
Thermal Properties of Matter

146506 A wire $3 \mathrm{~m}$ in length and $1 \mathrm{~mm}$ in diameter at $30^{\circ} \mathrm{C}$ is kept in a low temperature at $-170^{\circ} \mathrm{C}$ and is stretched by hanging a weight of $10 \mathrm{~kg}$ at one end. The change in length of the wire is : $\left[\mathrm{Y}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}\right.$ and $\alpha=1.2 \times 10^{-}$ $\left.{ }^{5} /{ }^{\circ} \mathrm{C}\right]$

1 $5.2 \mathrm{~mm}$
2 $2.5 \mathrm{~mm}$
3 $52 \mathrm{~mm}$
4 $25 \mathrm{~mm}$
Thermal Properties of Matter

146507 An iron bar of length $10 \mathrm{~m}$ is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. If the coefficient of linear thermal expansion of iron is $10 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, the increase in the length of bar is :

1 $0.5 \mathrm{~cm}$
2 $1.0 \mathrm{~cm}$
3 $1.5 \mathrm{~cm}$
4 $2.0 \mathrm{~cm}$
Thermal Properties of Matter

146508 Two rods of different materials having coefficients of thermal expansions $\alpha_{1}$ and $\alpha_{2}$ and Young's modulus $Y_{1}$ and $Y_{2}$ respectively are fixed between two rigid walls. The rod are heated, such that they undergo the same increase in temperature. There is no bending of rods. If $\alpha_{1} / \alpha_{2}=2 / 3$ and stresses developed in the two rods are equal, then $\frac{Y_{1}}{Y_{2}}$ is :

1 $3 / 2$
2 1
3 $2 / 3$
4 $1 / 2$
Thermal Properties of Matter

146504 Heat flows through two rods having same temperature difference at the ends. One rod is of length $l_{1}$, radius $r_{1}$ and thermal conductivity $K_{1}$ and the other rod of $l_{2}, r_{2}$ and $K_{2}$. The heat flow rate through the two rods will be equal, if

1 $\mathrm{K}_{1} l_{2}=\mathrm{K}_{2} l_{1}$
2 $\mathrm{K}_{1} \mathrm{r}_{1}^{2}=\mathrm{K}_{2} l_{2}^{2}$
3 $\mathrm{K}_{1} l_{2} \mathrm{r}_{1}=\mathrm{K}_{2} l_{1} \mathrm{r}_{2}$
4 $\mathrm{K}_{1} l_{2} \mathrm{r}_{1}^{2}=\mathrm{K}_{2} l_{1} \mathrm{r}_{2}^{2}$
Thermal Properties of Matter

146506 A wire $3 \mathrm{~m}$ in length and $1 \mathrm{~mm}$ in diameter at $30^{\circ} \mathrm{C}$ is kept in a low temperature at $-170^{\circ} \mathrm{C}$ and is stretched by hanging a weight of $10 \mathrm{~kg}$ at one end. The change in length of the wire is : $\left[\mathrm{Y}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}\right.$ and $\alpha=1.2 \times 10^{-}$ $\left.{ }^{5} /{ }^{\circ} \mathrm{C}\right]$

1 $5.2 \mathrm{~mm}$
2 $2.5 \mathrm{~mm}$
3 $52 \mathrm{~mm}$
4 $25 \mathrm{~mm}$
Thermal Properties of Matter

146507 An iron bar of length $10 \mathrm{~m}$ is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. If the coefficient of linear thermal expansion of iron is $10 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, the increase in the length of bar is :

1 $0.5 \mathrm{~cm}$
2 $1.0 \mathrm{~cm}$
3 $1.5 \mathrm{~cm}$
4 $2.0 \mathrm{~cm}$
Thermal Properties of Matter

146508 Two rods of different materials having coefficients of thermal expansions $\alpha_{1}$ and $\alpha_{2}$ and Young's modulus $Y_{1}$ and $Y_{2}$ respectively are fixed between two rigid walls. The rod are heated, such that they undergo the same increase in temperature. There is no bending of rods. If $\alpha_{1} / \alpha_{2}=2 / 3$ and stresses developed in the two rods are equal, then $\frac{Y_{1}}{Y_{2}}$ is :

1 $3 / 2$
2 1
3 $2 / 3$
4 $1 / 2$
Thermal Properties of Matter

146504 Heat flows through two rods having same temperature difference at the ends. One rod is of length $l_{1}$, radius $r_{1}$ and thermal conductivity $K_{1}$ and the other rod of $l_{2}, r_{2}$ and $K_{2}$. The heat flow rate through the two rods will be equal, if

1 $\mathrm{K}_{1} l_{2}=\mathrm{K}_{2} l_{1}$
2 $\mathrm{K}_{1} \mathrm{r}_{1}^{2}=\mathrm{K}_{2} l_{2}^{2}$
3 $\mathrm{K}_{1} l_{2} \mathrm{r}_{1}=\mathrm{K}_{2} l_{1} \mathrm{r}_{2}$
4 $\mathrm{K}_{1} l_{2} \mathrm{r}_{1}^{2}=\mathrm{K}_{2} l_{1} \mathrm{r}_{2}^{2}$
Thermal Properties of Matter

146506 A wire $3 \mathrm{~m}$ in length and $1 \mathrm{~mm}$ in diameter at $30^{\circ} \mathrm{C}$ is kept in a low temperature at $-170^{\circ} \mathrm{C}$ and is stretched by hanging a weight of $10 \mathrm{~kg}$ at one end. The change in length of the wire is : $\left[\mathrm{Y}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}\right.$ and $\alpha=1.2 \times 10^{-}$ $\left.{ }^{5} /{ }^{\circ} \mathrm{C}\right]$

1 $5.2 \mathrm{~mm}$
2 $2.5 \mathrm{~mm}$
3 $52 \mathrm{~mm}$
4 $25 \mathrm{~mm}$
Thermal Properties of Matter

146507 An iron bar of length $10 \mathrm{~m}$ is heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. If the coefficient of linear thermal expansion of iron is $10 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, the increase in the length of bar is :

1 $0.5 \mathrm{~cm}$
2 $1.0 \mathrm{~cm}$
3 $1.5 \mathrm{~cm}$
4 $2.0 \mathrm{~cm}$
Thermal Properties of Matter

146508 Two rods of different materials having coefficients of thermal expansions $\alpha_{1}$ and $\alpha_{2}$ and Young's modulus $Y_{1}$ and $Y_{2}$ respectively are fixed between two rigid walls. The rod are heated, such that they undergo the same increase in temperature. There is no bending of rods. If $\alpha_{1} / \alpha_{2}=2 / 3$ and stresses developed in the two rods are equal, then $\frac{Y_{1}}{Y_{2}}$ is :

1 $3 / 2$
2 1
3 $2 / 3$
4 $1 / 2$