00. Temperature and Measurement of Temperature (Thermometer)
Thermal Properties of Matter

146448 In a platinum resistance thermometer, the resistances of the wire at ice point and steam point are of $4 \Omega$ and $4.25 \Omega$ respectively. When the thermometer is kept in a hot water bath, whose temperature is not known, the resistance of the wire is found to be $4.5 \Omega$. The temperature of the hot water bath is

1 $150^{\circ} \mathrm{C}$
2 $100^{\circ} \mathrm{C}$
3 $300^{\circ} \mathrm{C}$
4 $350^{\circ} \mathrm{C}$
5 $200^{\circ} \mathrm{C}$
Thermal Properties of Matter

146449 If $\theta_{\mathrm{i}}$ is inversion temperature, $\theta_{\mathrm{n}}$ is the neutral temperature, $\theta_{c}$ is the temperature of the cold junction for thermocouple, then

1 $\theta_{\mathrm{i}}+\theta_{\mathrm{c}}=\theta_{\mathrm{n}}$
2 $\theta_{\mathrm{i}}-\theta_{\mathrm{c}}=2 \theta_{\mathrm{n}}$
3 $\frac{\theta_{1}+\theta_{\mathrm{c}}}{2}=\theta_{\mathrm{n}}$
4 $\theta_{\mathrm{c}}-\theta_{\mathrm{i}}=2 \theta_{\mathrm{n}}$
Thermal Properties of Matter

146451 When $50 \mathrm{~g}$ of water at $10^{\circ} \mathrm{C}$ is mixed with $50 \mathrm{~g}$ of water at $100^{\circ} \mathrm{C}$. The resultant temperature is

1 $80^{\circ} \mathrm{C}$
2 $55^{\circ} \mathrm{C}$
3 $25^{\circ} \mathrm{C}$
4 $45^{\circ} \mathrm{C}$
Thermal Properties of Matter

146452 $5 \mathrm{~kg}$ of water at $20^{\circ} \mathrm{C}$ is added to $10 \mathrm{~kg}$ of water at $60^{\circ} \mathrm{C}$. Neglecting heat capacity of vessel and other losses, the resultant temperature will be nearly

1 $35^{\circ} \mathrm{C}$
2 $40^{\circ} \mathrm{C}$
3 $47^{\circ} \mathrm{C}$
4 $28^{\circ} \mathrm{C}$
Thermal Properties of Matter

146448 In a platinum resistance thermometer, the resistances of the wire at ice point and steam point are of $4 \Omega$ and $4.25 \Omega$ respectively. When the thermometer is kept in a hot water bath, whose temperature is not known, the resistance of the wire is found to be $4.5 \Omega$. The temperature of the hot water bath is

1 $150^{\circ} \mathrm{C}$
2 $100^{\circ} \mathrm{C}$
3 $300^{\circ} \mathrm{C}$
4 $350^{\circ} \mathrm{C}$
5 $200^{\circ} \mathrm{C}$
Thermal Properties of Matter

146449 If $\theta_{\mathrm{i}}$ is inversion temperature, $\theta_{\mathrm{n}}$ is the neutral temperature, $\theta_{c}$ is the temperature of the cold junction for thermocouple, then

1 $\theta_{\mathrm{i}}+\theta_{\mathrm{c}}=\theta_{\mathrm{n}}$
2 $\theta_{\mathrm{i}}-\theta_{\mathrm{c}}=2 \theta_{\mathrm{n}}$
3 $\frac{\theta_{1}+\theta_{\mathrm{c}}}{2}=\theta_{\mathrm{n}}$
4 $\theta_{\mathrm{c}}-\theta_{\mathrm{i}}=2 \theta_{\mathrm{n}}$
Thermal Properties of Matter

146451 When $50 \mathrm{~g}$ of water at $10^{\circ} \mathrm{C}$ is mixed with $50 \mathrm{~g}$ of water at $100^{\circ} \mathrm{C}$. The resultant temperature is

1 $80^{\circ} \mathrm{C}$
2 $55^{\circ} \mathrm{C}$
3 $25^{\circ} \mathrm{C}$
4 $45^{\circ} \mathrm{C}$
Thermal Properties of Matter

146452 $5 \mathrm{~kg}$ of water at $20^{\circ} \mathrm{C}$ is added to $10 \mathrm{~kg}$ of water at $60^{\circ} \mathrm{C}$. Neglecting heat capacity of vessel and other losses, the resultant temperature will be nearly

1 $35^{\circ} \mathrm{C}$
2 $40^{\circ} \mathrm{C}$
3 $47^{\circ} \mathrm{C}$
4 $28^{\circ} \mathrm{C}$
Thermal Properties of Matter

146448 In a platinum resistance thermometer, the resistances of the wire at ice point and steam point are of $4 \Omega$ and $4.25 \Omega$ respectively. When the thermometer is kept in a hot water bath, whose temperature is not known, the resistance of the wire is found to be $4.5 \Omega$. The temperature of the hot water bath is

1 $150^{\circ} \mathrm{C}$
2 $100^{\circ} \mathrm{C}$
3 $300^{\circ} \mathrm{C}$
4 $350^{\circ} \mathrm{C}$
5 $200^{\circ} \mathrm{C}$
Thermal Properties of Matter

146449 If $\theta_{\mathrm{i}}$ is inversion temperature, $\theta_{\mathrm{n}}$ is the neutral temperature, $\theta_{c}$ is the temperature of the cold junction for thermocouple, then

1 $\theta_{\mathrm{i}}+\theta_{\mathrm{c}}=\theta_{\mathrm{n}}$
2 $\theta_{\mathrm{i}}-\theta_{\mathrm{c}}=2 \theta_{\mathrm{n}}$
3 $\frac{\theta_{1}+\theta_{\mathrm{c}}}{2}=\theta_{\mathrm{n}}$
4 $\theta_{\mathrm{c}}-\theta_{\mathrm{i}}=2 \theta_{\mathrm{n}}$
Thermal Properties of Matter

146451 When $50 \mathrm{~g}$ of water at $10^{\circ} \mathrm{C}$ is mixed with $50 \mathrm{~g}$ of water at $100^{\circ} \mathrm{C}$. The resultant temperature is

1 $80^{\circ} \mathrm{C}$
2 $55^{\circ} \mathrm{C}$
3 $25^{\circ} \mathrm{C}$
4 $45^{\circ} \mathrm{C}$
Thermal Properties of Matter

146452 $5 \mathrm{~kg}$ of water at $20^{\circ} \mathrm{C}$ is added to $10 \mathrm{~kg}$ of water at $60^{\circ} \mathrm{C}$. Neglecting heat capacity of vessel and other losses, the resultant temperature will be nearly

1 $35^{\circ} \mathrm{C}$
2 $40^{\circ} \mathrm{C}$
3 $47^{\circ} \mathrm{C}$
4 $28^{\circ} \mathrm{C}$
Thermal Properties of Matter

146448 In a platinum resistance thermometer, the resistances of the wire at ice point and steam point are of $4 \Omega$ and $4.25 \Omega$ respectively. When the thermometer is kept in a hot water bath, whose temperature is not known, the resistance of the wire is found to be $4.5 \Omega$. The temperature of the hot water bath is

1 $150^{\circ} \mathrm{C}$
2 $100^{\circ} \mathrm{C}$
3 $300^{\circ} \mathrm{C}$
4 $350^{\circ} \mathrm{C}$
5 $200^{\circ} \mathrm{C}$
Thermal Properties of Matter

146449 If $\theta_{\mathrm{i}}$ is inversion temperature, $\theta_{\mathrm{n}}$ is the neutral temperature, $\theta_{c}$ is the temperature of the cold junction for thermocouple, then

1 $\theta_{\mathrm{i}}+\theta_{\mathrm{c}}=\theta_{\mathrm{n}}$
2 $\theta_{\mathrm{i}}-\theta_{\mathrm{c}}=2 \theta_{\mathrm{n}}$
3 $\frac{\theta_{1}+\theta_{\mathrm{c}}}{2}=\theta_{\mathrm{n}}$
4 $\theta_{\mathrm{c}}-\theta_{\mathrm{i}}=2 \theta_{\mathrm{n}}$
Thermal Properties of Matter

146451 When $50 \mathrm{~g}$ of water at $10^{\circ} \mathrm{C}$ is mixed with $50 \mathrm{~g}$ of water at $100^{\circ} \mathrm{C}$. The resultant temperature is

1 $80^{\circ} \mathrm{C}$
2 $55^{\circ} \mathrm{C}$
3 $25^{\circ} \mathrm{C}$
4 $45^{\circ} \mathrm{C}$
Thermal Properties of Matter

146452 $5 \mathrm{~kg}$ of water at $20^{\circ} \mathrm{C}$ is added to $10 \mathrm{~kg}$ of water at $60^{\circ} \mathrm{C}$. Neglecting heat capacity of vessel and other losses, the resultant temperature will be nearly

1 $35^{\circ} \mathrm{C}$
2 $40^{\circ} \mathrm{C}$
3 $47^{\circ} \mathrm{C}$
4 $28^{\circ} \mathrm{C}$