00. Temperature and Measurement of Temperature (Thermometer)
Thermal Properties of Matter

146443 One rod of length $2 \mathrm{~m}$ and thermal conductivity 50 unit is attached to another rod of length $1 \mathrm{~m}$ and thermal conductivity 100 unit. Temperature of free ends are $70{ }^{\circ} \mathrm{C}$ and $5^{\circ} \mathrm{C}$ respectively. Then temperature of junction point will be

1 $60^{\circ} \mathrm{C}$
2 $54^{\circ} \mathrm{C}$
3 $64^{\circ} \mathrm{C}$
4 $68^{\circ} \mathrm{C}$
Thermal Properties of Matter

146444 Oxygen boils at $-183^{\circ} \mathrm{C}$. This temperature is approximately

1 $215^{\circ} \mathrm{F}$
2 $-297^{\circ} \mathrm{F}$
3 $329^{\circ} \mathrm{F}$
4 $361^{\circ} \mathrm{F}$
Thermal Properties of Matter

146445 At room temperature $\left(27^{\circ} \mathrm{C}\right)$ the resistance of a heating element is $100 \Omega$. What is the temperature of the element if the resistance is found to be $137 \Omega$, given that the temperature coefficient of the material of the resistor is $\mathbf{1 . 3 5}$ $\times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$.

1 $2767^{\circ} \mathrm{C}$
2 $1227^{\circ}$
3 $1027^{\circ} \mathrm{C}$
4 $2327^{\circ} \mathrm{C}$
Thermal Properties of Matter

146446 On a hilly region, water boils at $95^{\circ} \mathrm{C}$. The temperature expressed in Fahrenheit is

1 $100^{\circ} \mathrm{F}$
2 $20.3^{\circ} \mathrm{F}$
3 $150^{\circ} \mathrm{F}$
4 $203^{\circ} \mathrm{F}$
Thermal Properties of Matter

146443 One rod of length $2 \mathrm{~m}$ and thermal conductivity 50 unit is attached to another rod of length $1 \mathrm{~m}$ and thermal conductivity 100 unit. Temperature of free ends are $70{ }^{\circ} \mathrm{C}$ and $5^{\circ} \mathrm{C}$ respectively. Then temperature of junction point will be

1 $60^{\circ} \mathrm{C}$
2 $54^{\circ} \mathrm{C}$
3 $64^{\circ} \mathrm{C}$
4 $68^{\circ} \mathrm{C}$
Thermal Properties of Matter

146444 Oxygen boils at $-183^{\circ} \mathrm{C}$. This temperature is approximately

1 $215^{\circ} \mathrm{F}$
2 $-297^{\circ} \mathrm{F}$
3 $329^{\circ} \mathrm{F}$
4 $361^{\circ} \mathrm{F}$
Thermal Properties of Matter

146445 At room temperature $\left(27^{\circ} \mathrm{C}\right)$ the resistance of a heating element is $100 \Omega$. What is the temperature of the element if the resistance is found to be $137 \Omega$, given that the temperature coefficient of the material of the resistor is $\mathbf{1 . 3 5}$ $\times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$.

1 $2767^{\circ} \mathrm{C}$
2 $1227^{\circ}$
3 $1027^{\circ} \mathrm{C}$
4 $2327^{\circ} \mathrm{C}$
Thermal Properties of Matter

146446 On a hilly region, water boils at $95^{\circ} \mathrm{C}$. The temperature expressed in Fahrenheit is

1 $100^{\circ} \mathrm{F}$
2 $20.3^{\circ} \mathrm{F}$
3 $150^{\circ} \mathrm{F}$
4 $203^{\circ} \mathrm{F}$
Thermal Properties of Matter

146443 One rod of length $2 \mathrm{~m}$ and thermal conductivity 50 unit is attached to another rod of length $1 \mathrm{~m}$ and thermal conductivity 100 unit. Temperature of free ends are $70{ }^{\circ} \mathrm{C}$ and $5^{\circ} \mathrm{C}$ respectively. Then temperature of junction point will be

1 $60^{\circ} \mathrm{C}$
2 $54^{\circ} \mathrm{C}$
3 $64^{\circ} \mathrm{C}$
4 $68^{\circ} \mathrm{C}$
Thermal Properties of Matter

146444 Oxygen boils at $-183^{\circ} \mathrm{C}$. This temperature is approximately

1 $215^{\circ} \mathrm{F}$
2 $-297^{\circ} \mathrm{F}$
3 $329^{\circ} \mathrm{F}$
4 $361^{\circ} \mathrm{F}$
Thermal Properties of Matter

146445 At room temperature $\left(27^{\circ} \mathrm{C}\right)$ the resistance of a heating element is $100 \Omega$. What is the temperature of the element if the resistance is found to be $137 \Omega$, given that the temperature coefficient of the material of the resistor is $\mathbf{1 . 3 5}$ $\times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$.

1 $2767^{\circ} \mathrm{C}$
2 $1227^{\circ}$
3 $1027^{\circ} \mathrm{C}$
4 $2327^{\circ} \mathrm{C}$
Thermal Properties of Matter

146446 On a hilly region, water boils at $95^{\circ} \mathrm{C}$. The temperature expressed in Fahrenheit is

1 $100^{\circ} \mathrm{F}$
2 $20.3^{\circ} \mathrm{F}$
3 $150^{\circ} \mathrm{F}$
4 $203^{\circ} \mathrm{F}$
Thermal Properties of Matter

146443 One rod of length $2 \mathrm{~m}$ and thermal conductivity 50 unit is attached to another rod of length $1 \mathrm{~m}$ and thermal conductivity 100 unit. Temperature of free ends are $70{ }^{\circ} \mathrm{C}$ and $5^{\circ} \mathrm{C}$ respectively. Then temperature of junction point will be

1 $60^{\circ} \mathrm{C}$
2 $54^{\circ} \mathrm{C}$
3 $64^{\circ} \mathrm{C}$
4 $68^{\circ} \mathrm{C}$
Thermal Properties of Matter

146444 Oxygen boils at $-183^{\circ} \mathrm{C}$. This temperature is approximately

1 $215^{\circ} \mathrm{F}$
2 $-297^{\circ} \mathrm{F}$
3 $329^{\circ} \mathrm{F}$
4 $361^{\circ} \mathrm{F}$
Thermal Properties of Matter

146445 At room temperature $\left(27^{\circ} \mathrm{C}\right)$ the resistance of a heating element is $100 \Omega$. What is the temperature of the element if the resistance is found to be $137 \Omega$, given that the temperature coefficient of the material of the resistor is $\mathbf{1 . 3 5}$ $\times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$.

1 $2767^{\circ} \mathrm{C}$
2 $1227^{\circ}$
3 $1027^{\circ} \mathrm{C}$
4 $2327^{\circ} \mathrm{C}$
Thermal Properties of Matter

146446 On a hilly region, water boils at $95^{\circ} \mathrm{C}$. The temperature expressed in Fahrenheit is

1 $100^{\circ} \mathrm{F}$
2 $20.3^{\circ} \mathrm{F}$
3 $150^{\circ} \mathrm{F}$
4 $203^{\circ} \mathrm{F}$