04. Pascal's Law and Pressure Inside the Fluid
Mechanical Properties of Fluids

143158 Bulk modulus of water is $2 \times 10^{9} \mathrm{Nm}^{-2}$. The pressure required to increase the volume of water by $0.1 \%$ in $\mathrm{Nm}^{-2}$ is

1 $2 \times 10^{9}$
2 $2 \times 10^{0}$
3 $2 \times 10^{6}$
4 $2 \times 10^{4}$
Mechanical Properties of Fluids

143159 A force of $500 \mathrm{~N}$ is executed on a hydraulic piston of cross sectional area of $100 \mathrm{~cm}^{2}$. The cross-sectional area of other piston which supports a truck of a tonne weight is [use $g=$ $9.8 \mathrm{~m} / \mathrm{s}^{2}$ ]

1 $200 \mathrm{~cm}^{2}$
2 $196 \mathrm{~cm}^{2}$
3 $1960 \mathrm{~cm}^{2}$
4 $98 \mathrm{~cm}^{2}$
Mechanical Properties of Fluids

143160 If a soap bubble expands, the pressure inside the bubble

1 Remains the same
2 Is equal to the atmospheric pressure
3 Decreases
4 Increases
Mechanical Properties of Fluids

143161 The volume contraction of a solid copper cube, $10 \mathrm{~cm}$ on an edge, when subjected to a hydraulic pressure of $7.0 \times 10^{6} \mathrm{~Pa}$ is
(B for copper $=140 \times 10^{9} \mathrm{Nm}^{-2}$ )

1 $0.058 \mathrm{~cm}^{3}$
2 $5 \times 10^{-2} \mathrm{~cm}^{3}$
3 $6.0 \times 10^{-2} \mathrm{~cm}^{3}$
4 $5 \times 10^{-3} \mathrm{~m}^{3}$
Mechanical Properties of Fluids

143162 The density of air in the earth's atmosphere decreases with height as $\rho=\rho_{0} \mathrm{e}^{-\mathrm{kh}}$, where $\rho_{0}=$ density of air at sea level and $k$ is a constant. The atmospheric pressure at sea level is

1 $\frac{\rho_{0} \mathrm{~g}}{2 \mathrm{k}}$
2 $\frac{\rho_{0} \mathrm{~g}}{\mathrm{k}}$
3 $\frac{2 \rho_{0} \mathrm{~g}}{\mathrm{k}}$
4 $\frac{\rho_{0} \mathrm{~g}}{\sqrt{2 \mathrm{k}}}$
Mechanical Properties of Fluids

143158 Bulk modulus of water is $2 \times 10^{9} \mathrm{Nm}^{-2}$. The pressure required to increase the volume of water by $0.1 \%$ in $\mathrm{Nm}^{-2}$ is

1 $2 \times 10^{9}$
2 $2 \times 10^{0}$
3 $2 \times 10^{6}$
4 $2 \times 10^{4}$
Mechanical Properties of Fluids

143159 A force of $500 \mathrm{~N}$ is executed on a hydraulic piston of cross sectional area of $100 \mathrm{~cm}^{2}$. The cross-sectional area of other piston which supports a truck of a tonne weight is [use $g=$ $9.8 \mathrm{~m} / \mathrm{s}^{2}$ ]

1 $200 \mathrm{~cm}^{2}$
2 $196 \mathrm{~cm}^{2}$
3 $1960 \mathrm{~cm}^{2}$
4 $98 \mathrm{~cm}^{2}$
Mechanical Properties of Fluids

143160 If a soap bubble expands, the pressure inside the bubble

1 Remains the same
2 Is equal to the atmospheric pressure
3 Decreases
4 Increases
Mechanical Properties of Fluids

143161 The volume contraction of a solid copper cube, $10 \mathrm{~cm}$ on an edge, when subjected to a hydraulic pressure of $7.0 \times 10^{6} \mathrm{~Pa}$ is
(B for copper $=140 \times 10^{9} \mathrm{Nm}^{-2}$ )

1 $0.058 \mathrm{~cm}^{3}$
2 $5 \times 10^{-2} \mathrm{~cm}^{3}$
3 $6.0 \times 10^{-2} \mathrm{~cm}^{3}$
4 $5 \times 10^{-3} \mathrm{~m}^{3}$
Mechanical Properties of Fluids

143162 The density of air in the earth's atmosphere decreases with height as $\rho=\rho_{0} \mathrm{e}^{-\mathrm{kh}}$, where $\rho_{0}=$ density of air at sea level and $k$ is a constant. The atmospheric pressure at sea level is

1 $\frac{\rho_{0} \mathrm{~g}}{2 \mathrm{k}}$
2 $\frac{\rho_{0} \mathrm{~g}}{\mathrm{k}}$
3 $\frac{2 \rho_{0} \mathrm{~g}}{\mathrm{k}}$
4 $\frac{\rho_{0} \mathrm{~g}}{\sqrt{2 \mathrm{k}}}$
Mechanical Properties of Fluids

143158 Bulk modulus of water is $2 \times 10^{9} \mathrm{Nm}^{-2}$. The pressure required to increase the volume of water by $0.1 \%$ in $\mathrm{Nm}^{-2}$ is

1 $2 \times 10^{9}$
2 $2 \times 10^{0}$
3 $2 \times 10^{6}$
4 $2 \times 10^{4}$
Mechanical Properties of Fluids

143159 A force of $500 \mathrm{~N}$ is executed on a hydraulic piston of cross sectional area of $100 \mathrm{~cm}^{2}$. The cross-sectional area of other piston which supports a truck of a tonne weight is [use $g=$ $9.8 \mathrm{~m} / \mathrm{s}^{2}$ ]

1 $200 \mathrm{~cm}^{2}$
2 $196 \mathrm{~cm}^{2}$
3 $1960 \mathrm{~cm}^{2}$
4 $98 \mathrm{~cm}^{2}$
Mechanical Properties of Fluids

143160 If a soap bubble expands, the pressure inside the bubble

1 Remains the same
2 Is equal to the atmospheric pressure
3 Decreases
4 Increases
Mechanical Properties of Fluids

143161 The volume contraction of a solid copper cube, $10 \mathrm{~cm}$ on an edge, when subjected to a hydraulic pressure of $7.0 \times 10^{6} \mathrm{~Pa}$ is
(B for copper $=140 \times 10^{9} \mathrm{Nm}^{-2}$ )

1 $0.058 \mathrm{~cm}^{3}$
2 $5 \times 10^{-2} \mathrm{~cm}^{3}$
3 $6.0 \times 10^{-2} \mathrm{~cm}^{3}$
4 $5 \times 10^{-3} \mathrm{~m}^{3}$
Mechanical Properties of Fluids

143162 The density of air in the earth's atmosphere decreases with height as $\rho=\rho_{0} \mathrm{e}^{-\mathrm{kh}}$, where $\rho_{0}=$ density of air at sea level and $k$ is a constant. The atmospheric pressure at sea level is

1 $\frac{\rho_{0} \mathrm{~g}}{2 \mathrm{k}}$
2 $\frac{\rho_{0} \mathrm{~g}}{\mathrm{k}}$
3 $\frac{2 \rho_{0} \mathrm{~g}}{\mathrm{k}}$
4 $\frac{\rho_{0} \mathrm{~g}}{\sqrt{2 \mathrm{k}}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Mechanical Properties of Fluids

143158 Bulk modulus of water is $2 \times 10^{9} \mathrm{Nm}^{-2}$. The pressure required to increase the volume of water by $0.1 \%$ in $\mathrm{Nm}^{-2}$ is

1 $2 \times 10^{9}$
2 $2 \times 10^{0}$
3 $2 \times 10^{6}$
4 $2 \times 10^{4}$
Mechanical Properties of Fluids

143159 A force of $500 \mathrm{~N}$ is executed on a hydraulic piston of cross sectional area of $100 \mathrm{~cm}^{2}$. The cross-sectional area of other piston which supports a truck of a tonne weight is [use $g=$ $9.8 \mathrm{~m} / \mathrm{s}^{2}$ ]

1 $200 \mathrm{~cm}^{2}$
2 $196 \mathrm{~cm}^{2}$
3 $1960 \mathrm{~cm}^{2}$
4 $98 \mathrm{~cm}^{2}$
Mechanical Properties of Fluids

143160 If a soap bubble expands, the pressure inside the bubble

1 Remains the same
2 Is equal to the atmospheric pressure
3 Decreases
4 Increases
Mechanical Properties of Fluids

143161 The volume contraction of a solid copper cube, $10 \mathrm{~cm}$ on an edge, when subjected to a hydraulic pressure of $7.0 \times 10^{6} \mathrm{~Pa}$ is
(B for copper $=140 \times 10^{9} \mathrm{Nm}^{-2}$ )

1 $0.058 \mathrm{~cm}^{3}$
2 $5 \times 10^{-2} \mathrm{~cm}^{3}$
3 $6.0 \times 10^{-2} \mathrm{~cm}^{3}$
4 $5 \times 10^{-3} \mathrm{~m}^{3}$
Mechanical Properties of Fluids

143162 The density of air in the earth's atmosphere decreases with height as $\rho=\rho_{0} \mathrm{e}^{-\mathrm{kh}}$, where $\rho_{0}=$ density of air at sea level and $k$ is a constant. The atmospheric pressure at sea level is

1 $\frac{\rho_{0} \mathrm{~g}}{2 \mathrm{k}}$
2 $\frac{\rho_{0} \mathrm{~g}}{\mathrm{k}}$
3 $\frac{2 \rho_{0} \mathrm{~g}}{\mathrm{k}}$
4 $\frac{\rho_{0} \mathrm{~g}}{\sqrt{2 \mathrm{k}}}$
Mechanical Properties of Fluids

143158 Bulk modulus of water is $2 \times 10^{9} \mathrm{Nm}^{-2}$. The pressure required to increase the volume of water by $0.1 \%$ in $\mathrm{Nm}^{-2}$ is

1 $2 \times 10^{9}$
2 $2 \times 10^{0}$
3 $2 \times 10^{6}$
4 $2 \times 10^{4}$
Mechanical Properties of Fluids

143159 A force of $500 \mathrm{~N}$ is executed on a hydraulic piston of cross sectional area of $100 \mathrm{~cm}^{2}$. The cross-sectional area of other piston which supports a truck of a tonne weight is [use $g=$ $9.8 \mathrm{~m} / \mathrm{s}^{2}$ ]

1 $200 \mathrm{~cm}^{2}$
2 $196 \mathrm{~cm}^{2}$
3 $1960 \mathrm{~cm}^{2}$
4 $98 \mathrm{~cm}^{2}$
Mechanical Properties of Fluids

143160 If a soap bubble expands, the pressure inside the bubble

1 Remains the same
2 Is equal to the atmospheric pressure
3 Decreases
4 Increases
Mechanical Properties of Fluids

143161 The volume contraction of a solid copper cube, $10 \mathrm{~cm}$ on an edge, when subjected to a hydraulic pressure of $7.0 \times 10^{6} \mathrm{~Pa}$ is
(B for copper $=140 \times 10^{9} \mathrm{Nm}^{-2}$ )

1 $0.058 \mathrm{~cm}^{3}$
2 $5 \times 10^{-2} \mathrm{~cm}^{3}$
3 $6.0 \times 10^{-2} \mathrm{~cm}^{3}$
4 $5 \times 10^{-3} \mathrm{~m}^{3}$
Mechanical Properties of Fluids

143162 The density of air in the earth's atmosphere decreases with height as $\rho=\rho_{0} \mathrm{e}^{-\mathrm{kh}}$, where $\rho_{0}=$ density of air at sea level and $k$ is a constant. The atmospheric pressure at sea level is

1 $\frac{\rho_{0} \mathrm{~g}}{2 \mathrm{k}}$
2 $\frac{\rho_{0} \mathrm{~g}}{\mathrm{k}}$
3 $\frac{2 \rho_{0} \mathrm{~g}}{\mathrm{k}}$
4 $\frac{\rho_{0} \mathrm{~g}}{\sqrt{2 \mathrm{k}}}$