04. Pascal's Law and Pressure Inside the Fluid
Mechanical Properties of Fluids

143127 Figure here shows the vertical cross section of a vessel filled with a liquid of density $\rho$. The normal thrust per unit area on the walls of the vessel at the point $P$, as shown, will be

1 $\mathrm{h} \rho \mathrm{g}$
2 $\mathrm{H} \rho \mathrm{g}$
3 $(\mathrm{H}-\mathrm{h}) \rho g$
4 $(\mathrm{H}-\mathrm{h}) \rho g \cos \theta$
Mechanical Properties of Fluids

143128 The approximate depth of an ocean is $2700 \mathrm{~m}$. The compressibility of water is $45.4 \times 10^{-11} \mathrm{~Pa}^{-1}$ and density of water is $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. What fractional compression of water will be obtained at the bottom of the ocean ?

1 $1.0 \times 10^{-2}$
2 $1.2 \times 10^{-2}$
3 $1.4 \times 10^{-2}$
4 $0.8 \times 10^{-2}$
Mechanical Properties of Fluids

143129 An air bubble rises from the bottom of a water tank of height $5 \mathrm{~m}$. If the initial volume of the bubble is $3 \mathbf{~ m m}^{3}$, then what will be its volume as in reaches the surface? Assume that its temperature does not change.
$\left[\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}, 1 \mathrm{~atm}=10^{5} \mathrm{~Pa}\right.$, density of water $=$ $1 \mathrm{gm} / \mathrm{cc}]$

1 $1.5 \mathrm{~mm}^{3}$
2 $4.5 \mathrm{~mm}^{3}$
3 $9 \mathrm{~mm}^{3}$
4 $6 \mathrm{~mm}^{3}$
Mechanical Properties of Fluids

143130 Consider a vessel filled with a liquid upto height $H$. The bottom of the vessel lies in the $X Y$-plane passing through the origin. The density of the liquid varies with Z-axis as $\rho(z)=\rho_{0}\left[2-\left(\frac{z}{H}\right)^{2}\right]$. If $p_{1}$ and $p_{2}$ are the pressures at the bottom surface and top surface of the liquid, the magnitude of $\left(p_{1}-p_{2}\right)$ is

1 $\rho_{0} \mathrm{gH}$
2 $\frac{8}{5} \rho_{0} g H$
3 $\frac{3}{2} \rho_{0} \mathrm{gH}$
4 $\frac{5}{3} \rho_{0} \mathrm{gH}$
Mechanical Properties of Fluids

143127 Figure here shows the vertical cross section of a vessel filled with a liquid of density $\rho$. The normal thrust per unit area on the walls of the vessel at the point $P$, as shown, will be

1 $\mathrm{h} \rho \mathrm{g}$
2 $\mathrm{H} \rho \mathrm{g}$
3 $(\mathrm{H}-\mathrm{h}) \rho g$
4 $(\mathrm{H}-\mathrm{h}) \rho g \cos \theta$
Mechanical Properties of Fluids

143128 The approximate depth of an ocean is $2700 \mathrm{~m}$. The compressibility of water is $45.4 \times 10^{-11} \mathrm{~Pa}^{-1}$ and density of water is $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. What fractional compression of water will be obtained at the bottom of the ocean ?

1 $1.0 \times 10^{-2}$
2 $1.2 \times 10^{-2}$
3 $1.4 \times 10^{-2}$
4 $0.8 \times 10^{-2}$
Mechanical Properties of Fluids

143129 An air bubble rises from the bottom of a water tank of height $5 \mathrm{~m}$. If the initial volume of the bubble is $3 \mathbf{~ m m}^{3}$, then what will be its volume as in reaches the surface? Assume that its temperature does not change.
$\left[\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}, 1 \mathrm{~atm}=10^{5} \mathrm{~Pa}\right.$, density of water $=$ $1 \mathrm{gm} / \mathrm{cc}]$

1 $1.5 \mathrm{~mm}^{3}$
2 $4.5 \mathrm{~mm}^{3}$
3 $9 \mathrm{~mm}^{3}$
4 $6 \mathrm{~mm}^{3}$
Mechanical Properties of Fluids

143130 Consider a vessel filled with a liquid upto height $H$. The bottom of the vessel lies in the $X Y$-plane passing through the origin. The density of the liquid varies with Z-axis as $\rho(z)=\rho_{0}\left[2-\left(\frac{z}{H}\right)^{2}\right]$. If $p_{1}$ and $p_{2}$ are the pressures at the bottom surface and top surface of the liquid, the magnitude of $\left(p_{1}-p_{2}\right)$ is

1 $\rho_{0} \mathrm{gH}$
2 $\frac{8}{5} \rho_{0} g H$
3 $\frac{3}{2} \rho_{0} \mathrm{gH}$
4 $\frac{5}{3} \rho_{0} \mathrm{gH}$
Mechanical Properties of Fluids

143127 Figure here shows the vertical cross section of a vessel filled with a liquid of density $\rho$. The normal thrust per unit area on the walls of the vessel at the point $P$, as shown, will be

1 $\mathrm{h} \rho \mathrm{g}$
2 $\mathrm{H} \rho \mathrm{g}$
3 $(\mathrm{H}-\mathrm{h}) \rho g$
4 $(\mathrm{H}-\mathrm{h}) \rho g \cos \theta$
Mechanical Properties of Fluids

143128 The approximate depth of an ocean is $2700 \mathrm{~m}$. The compressibility of water is $45.4 \times 10^{-11} \mathrm{~Pa}^{-1}$ and density of water is $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. What fractional compression of water will be obtained at the bottom of the ocean ?

1 $1.0 \times 10^{-2}$
2 $1.2 \times 10^{-2}$
3 $1.4 \times 10^{-2}$
4 $0.8 \times 10^{-2}$
Mechanical Properties of Fluids

143129 An air bubble rises from the bottom of a water tank of height $5 \mathrm{~m}$. If the initial volume of the bubble is $3 \mathbf{~ m m}^{3}$, then what will be its volume as in reaches the surface? Assume that its temperature does not change.
$\left[\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}, 1 \mathrm{~atm}=10^{5} \mathrm{~Pa}\right.$, density of water $=$ $1 \mathrm{gm} / \mathrm{cc}]$

1 $1.5 \mathrm{~mm}^{3}$
2 $4.5 \mathrm{~mm}^{3}$
3 $9 \mathrm{~mm}^{3}$
4 $6 \mathrm{~mm}^{3}$
Mechanical Properties of Fluids

143130 Consider a vessel filled with a liquid upto height $H$. The bottom of the vessel lies in the $X Y$-plane passing through the origin. The density of the liquid varies with Z-axis as $\rho(z)=\rho_{0}\left[2-\left(\frac{z}{H}\right)^{2}\right]$. If $p_{1}$ and $p_{2}$ are the pressures at the bottom surface and top surface of the liquid, the magnitude of $\left(p_{1}-p_{2}\right)$ is

1 $\rho_{0} \mathrm{gH}$
2 $\frac{8}{5} \rho_{0} g H$
3 $\frac{3}{2} \rho_{0} \mathrm{gH}$
4 $\frac{5}{3} \rho_{0} \mathrm{gH}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Mechanical Properties of Fluids

143127 Figure here shows the vertical cross section of a vessel filled with a liquid of density $\rho$. The normal thrust per unit area on the walls of the vessel at the point $P$, as shown, will be

1 $\mathrm{h} \rho \mathrm{g}$
2 $\mathrm{H} \rho \mathrm{g}$
3 $(\mathrm{H}-\mathrm{h}) \rho g$
4 $(\mathrm{H}-\mathrm{h}) \rho g \cos \theta$
Mechanical Properties of Fluids

143128 The approximate depth of an ocean is $2700 \mathrm{~m}$. The compressibility of water is $45.4 \times 10^{-11} \mathrm{~Pa}^{-1}$ and density of water is $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. What fractional compression of water will be obtained at the bottom of the ocean ?

1 $1.0 \times 10^{-2}$
2 $1.2 \times 10^{-2}$
3 $1.4 \times 10^{-2}$
4 $0.8 \times 10^{-2}$
Mechanical Properties of Fluids

143129 An air bubble rises from the bottom of a water tank of height $5 \mathrm{~m}$. If the initial volume of the bubble is $3 \mathbf{~ m m}^{3}$, then what will be its volume as in reaches the surface? Assume that its temperature does not change.
$\left[\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}, 1 \mathrm{~atm}=10^{5} \mathrm{~Pa}\right.$, density of water $=$ $1 \mathrm{gm} / \mathrm{cc}]$

1 $1.5 \mathrm{~mm}^{3}$
2 $4.5 \mathrm{~mm}^{3}$
3 $9 \mathrm{~mm}^{3}$
4 $6 \mathrm{~mm}^{3}$
Mechanical Properties of Fluids

143130 Consider a vessel filled with a liquid upto height $H$. The bottom of the vessel lies in the $X Y$-plane passing through the origin. The density of the liquid varies with Z-axis as $\rho(z)=\rho_{0}\left[2-\left(\frac{z}{H}\right)^{2}\right]$. If $p_{1}$ and $p_{2}$ are the pressures at the bottom surface and top surface of the liquid, the magnitude of $\left(p_{1}-p_{2}\right)$ is

1 $\rho_{0} \mathrm{gH}$
2 $\frac{8}{5} \rho_{0} g H$
3 $\frac{3}{2} \rho_{0} \mathrm{gH}$
4 $\frac{5}{3} \rho_{0} \mathrm{gH}$