04. Pascal's Law and Pressure Inside the Fluid
Mechanical Properties of Fluids

143123 Two thin circular discs $A$ and $B$ of radii $2 \mathrm{~cm}$ and $4 \mathrm{~cm}$ are in the liquid at the same depth. $T_{A}$ is the thrust on $A$ and $T_{B}$ thrust on $B$. Then, $\mathbf{T}_{\mathbf{A}}: \mathbf{T}_{\mathbf{B}}$

1 $2: 1$
2 $1: 2$
3 $4: 1$
4 $1: 4$
Mechanical Properties of Fluids

143124 If a vessel containing a fluid of density $\rho$ upto height $h$ is accelerated vertically downwards with acceleration $a_{0}$. Then the pressure by fluid at the bottom of vessel is given by the equation......... ( $p_{0}$ denotes the atmospheric pressure and $g$ denotes the acceleration due to gravity).

1 $\mathrm{p}=\mathrm{p}_{0}+\rho g \mathrm{~h}+\rho \mathrm{a}_{0}$
2 $\mathrm{p}=\mathrm{p}_{0}+\rho \mathrm{gh}$
3 $\mathrm{p}=\mathrm{p}_{0}+\rho \mathrm{h}\left(\mathrm{g}-\mathrm{a}_{0}\right)$
4 $\mathrm{p}=\mathrm{p}_{0}-\rho g \mathrm{~h}$
Mechanical Properties of Fluids

143125 A cylindrical wall of radius $2.5 \mathrm{~m}$ has water upto a height of $14 \mathrm{~m}$ from the bottom. If the water level is at a depth of $6 \mathrm{~m}$ from the top of the well, then the time taken (in minutes) to empty the well using a motor of $10 \mathrm{HP}$ is approximately,
(Take, $g=10 \mathrm{~ms}^{-2}$ )

1 30
2 80
3 98
4 90
Mechanical Properties of Fluids

143126 A square gate of size $1 \mathrm{~m} \times 1 \mathrm{~m}$ is hinged at its mid-point. A fluid of density $\rho$ fills the space to the left of the gate. The force $F$ required to hold the gate stationary is

1 $\frac{\rho g}{3}$
2 $\frac{\rho g}{2}$
3 $\frac{\rho g}{6}$
4 $\frac{\rho g}{8}$
Mechanical Properties of Fluids

143123 Two thin circular discs $A$ and $B$ of radii $2 \mathrm{~cm}$ and $4 \mathrm{~cm}$ are in the liquid at the same depth. $T_{A}$ is the thrust on $A$ and $T_{B}$ thrust on $B$. Then, $\mathbf{T}_{\mathbf{A}}: \mathbf{T}_{\mathbf{B}}$

1 $2: 1$
2 $1: 2$
3 $4: 1$
4 $1: 4$
Mechanical Properties of Fluids

143124 If a vessel containing a fluid of density $\rho$ upto height $h$ is accelerated vertically downwards with acceleration $a_{0}$. Then the pressure by fluid at the bottom of vessel is given by the equation......... ( $p_{0}$ denotes the atmospheric pressure and $g$ denotes the acceleration due to gravity).

1 $\mathrm{p}=\mathrm{p}_{0}+\rho g \mathrm{~h}+\rho \mathrm{a}_{0}$
2 $\mathrm{p}=\mathrm{p}_{0}+\rho \mathrm{gh}$
3 $\mathrm{p}=\mathrm{p}_{0}+\rho \mathrm{h}\left(\mathrm{g}-\mathrm{a}_{0}\right)$
4 $\mathrm{p}=\mathrm{p}_{0}-\rho g \mathrm{~h}$
Mechanical Properties of Fluids

143125 A cylindrical wall of radius $2.5 \mathrm{~m}$ has water upto a height of $14 \mathrm{~m}$ from the bottom. If the water level is at a depth of $6 \mathrm{~m}$ from the top of the well, then the time taken (in minutes) to empty the well using a motor of $10 \mathrm{HP}$ is approximately,
(Take, $g=10 \mathrm{~ms}^{-2}$ )

1 30
2 80
3 98
4 90
Mechanical Properties of Fluids

143126 A square gate of size $1 \mathrm{~m} \times 1 \mathrm{~m}$ is hinged at its mid-point. A fluid of density $\rho$ fills the space to the left of the gate. The force $F$ required to hold the gate stationary is

1 $\frac{\rho g}{3}$
2 $\frac{\rho g}{2}$
3 $\frac{\rho g}{6}$
4 $\frac{\rho g}{8}$
Mechanical Properties of Fluids

143123 Two thin circular discs $A$ and $B$ of radii $2 \mathrm{~cm}$ and $4 \mathrm{~cm}$ are in the liquid at the same depth. $T_{A}$ is the thrust on $A$ and $T_{B}$ thrust on $B$. Then, $\mathbf{T}_{\mathbf{A}}: \mathbf{T}_{\mathbf{B}}$

1 $2: 1$
2 $1: 2$
3 $4: 1$
4 $1: 4$
Mechanical Properties of Fluids

143124 If a vessel containing a fluid of density $\rho$ upto height $h$ is accelerated vertically downwards with acceleration $a_{0}$. Then the pressure by fluid at the bottom of vessel is given by the equation......... ( $p_{0}$ denotes the atmospheric pressure and $g$ denotes the acceleration due to gravity).

1 $\mathrm{p}=\mathrm{p}_{0}+\rho g \mathrm{~h}+\rho \mathrm{a}_{0}$
2 $\mathrm{p}=\mathrm{p}_{0}+\rho \mathrm{gh}$
3 $\mathrm{p}=\mathrm{p}_{0}+\rho \mathrm{h}\left(\mathrm{g}-\mathrm{a}_{0}\right)$
4 $\mathrm{p}=\mathrm{p}_{0}-\rho g \mathrm{~h}$
Mechanical Properties of Fluids

143125 A cylindrical wall of radius $2.5 \mathrm{~m}$ has water upto a height of $14 \mathrm{~m}$ from the bottom. If the water level is at a depth of $6 \mathrm{~m}$ from the top of the well, then the time taken (in minutes) to empty the well using a motor of $10 \mathrm{HP}$ is approximately,
(Take, $g=10 \mathrm{~ms}^{-2}$ )

1 30
2 80
3 98
4 90
Mechanical Properties of Fluids

143126 A square gate of size $1 \mathrm{~m} \times 1 \mathrm{~m}$ is hinged at its mid-point. A fluid of density $\rho$ fills the space to the left of the gate. The force $F$ required to hold the gate stationary is

1 $\frac{\rho g}{3}$
2 $\frac{\rho g}{2}$
3 $\frac{\rho g}{6}$
4 $\frac{\rho g}{8}$
Mechanical Properties of Fluids

143123 Two thin circular discs $A$ and $B$ of radii $2 \mathrm{~cm}$ and $4 \mathrm{~cm}$ are in the liquid at the same depth. $T_{A}$ is the thrust on $A$ and $T_{B}$ thrust on $B$. Then, $\mathbf{T}_{\mathbf{A}}: \mathbf{T}_{\mathbf{B}}$

1 $2: 1$
2 $1: 2$
3 $4: 1$
4 $1: 4$
Mechanical Properties of Fluids

143124 If a vessel containing a fluid of density $\rho$ upto height $h$ is accelerated vertically downwards with acceleration $a_{0}$. Then the pressure by fluid at the bottom of vessel is given by the equation......... ( $p_{0}$ denotes the atmospheric pressure and $g$ denotes the acceleration due to gravity).

1 $\mathrm{p}=\mathrm{p}_{0}+\rho g \mathrm{~h}+\rho \mathrm{a}_{0}$
2 $\mathrm{p}=\mathrm{p}_{0}+\rho \mathrm{gh}$
3 $\mathrm{p}=\mathrm{p}_{0}+\rho \mathrm{h}\left(\mathrm{g}-\mathrm{a}_{0}\right)$
4 $\mathrm{p}=\mathrm{p}_{0}-\rho g \mathrm{~h}$
Mechanical Properties of Fluids

143125 A cylindrical wall of radius $2.5 \mathrm{~m}$ has water upto a height of $14 \mathrm{~m}$ from the bottom. If the water level is at a depth of $6 \mathrm{~m}$ from the top of the well, then the time taken (in minutes) to empty the well using a motor of $10 \mathrm{HP}$ is approximately,
(Take, $g=10 \mathrm{~ms}^{-2}$ )

1 30
2 80
3 98
4 90
Mechanical Properties of Fluids

143126 A square gate of size $1 \mathrm{~m} \times 1 \mathrm{~m}$ is hinged at its mid-point. A fluid of density $\rho$ fills the space to the left of the gate. The force $F$ required to hold the gate stationary is

1 $\frac{\rho g}{3}$
2 $\frac{\rho g}{2}$
3 $\frac{\rho g}{6}$
4 $\frac{\rho g}{8}$