01. Surface Tension and Surface Energy
Mechanical Properties of Fluids

142825 The surface tension of a liquid is $5 \mathrm{~N} / \mathrm{m}$. If a film is held on a ring of area $0.02 \mathrm{~m}^{2}$, its total surface energy is about :

1 $2 \times 10^{-2} \mathrm{~J}$
2 $2.5 \times 10^{-2} \mathrm{~J}$
3 $2 \times 10^{-1} \mathrm{~J}$
4 $3 \times 10^{-1} \mathrm{~J}$
Mechanical Properties of Fluids

142826 Pressure inside two soap bubbles are 1.01 and 1.02 atm. Ratio between their volumes is :

1 $102: 101$
2 $(102)^{3}:(103)^{3}$
3 $8: 1$
4 $2: 1$
Mechanical Properties of Fluids

142827 A water film is formed between the two straight parallel wires, each of length $10 \mathrm{~cm}$, kept at a separation of $0.5 \mathrm{~cm}$. Now, the separation between them is increased by $1 \mathrm{~mm}$ without breaking the water film. The work done for this is
( Surface tension of water $=7.2 \times 10^{-2} \mathrm{Nm}^{-1}$ )

1 $1.44 \times 10^{-5} \mathrm{~J}$
2 $5.76 \times 10^{-5} \mathrm{~J}$
3 $7.22 \times 10^{-6} \mathrm{~J}$
4 $2.88 \times 10^{-5} \mathrm{~J}$
Mechanical Properties of Fluids

142829 If the surface tension of a soap solution is $3 \times$ $10^{-2} \mathrm{~N} / \mathrm{m}$, then the work done in forming a soap film of $20 \mathrm{~cm} \times 5 \mathrm{~cm}$ will be

1 $6 \times 10^{-3} \mathrm{~J}$
2 $6 \mathrm{~J}$
3 $6 \times 10^{-4} \mathrm{~J}$
4 $6 \times 10^{-2} \mathrm{~J}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Mechanical Properties of Fluids

142825 The surface tension of a liquid is $5 \mathrm{~N} / \mathrm{m}$. If a film is held on a ring of area $0.02 \mathrm{~m}^{2}$, its total surface energy is about :

1 $2 \times 10^{-2} \mathrm{~J}$
2 $2.5 \times 10^{-2} \mathrm{~J}$
3 $2 \times 10^{-1} \mathrm{~J}$
4 $3 \times 10^{-1} \mathrm{~J}$
Mechanical Properties of Fluids

142826 Pressure inside two soap bubbles are 1.01 and 1.02 atm. Ratio between their volumes is :

1 $102: 101$
2 $(102)^{3}:(103)^{3}$
3 $8: 1$
4 $2: 1$
Mechanical Properties of Fluids

142827 A water film is formed between the two straight parallel wires, each of length $10 \mathrm{~cm}$, kept at a separation of $0.5 \mathrm{~cm}$. Now, the separation between them is increased by $1 \mathrm{~mm}$ without breaking the water film. The work done for this is
( Surface tension of water $=7.2 \times 10^{-2} \mathrm{Nm}^{-1}$ )

1 $1.44 \times 10^{-5} \mathrm{~J}$
2 $5.76 \times 10^{-5} \mathrm{~J}$
3 $7.22 \times 10^{-6} \mathrm{~J}$
4 $2.88 \times 10^{-5} \mathrm{~J}$
Mechanical Properties of Fluids

142829 If the surface tension of a soap solution is $3 \times$ $10^{-2} \mathrm{~N} / \mathrm{m}$, then the work done in forming a soap film of $20 \mathrm{~cm} \times 5 \mathrm{~cm}$ will be

1 $6 \times 10^{-3} \mathrm{~J}$
2 $6 \mathrm{~J}$
3 $6 \times 10^{-4} \mathrm{~J}$
4 $6 \times 10^{-2} \mathrm{~J}$
Mechanical Properties of Fluids

142825 The surface tension of a liquid is $5 \mathrm{~N} / \mathrm{m}$. If a film is held on a ring of area $0.02 \mathrm{~m}^{2}$, its total surface energy is about :

1 $2 \times 10^{-2} \mathrm{~J}$
2 $2.5 \times 10^{-2} \mathrm{~J}$
3 $2 \times 10^{-1} \mathrm{~J}$
4 $3 \times 10^{-1} \mathrm{~J}$
Mechanical Properties of Fluids

142826 Pressure inside two soap bubbles are 1.01 and 1.02 atm. Ratio between their volumes is :

1 $102: 101$
2 $(102)^{3}:(103)^{3}$
3 $8: 1$
4 $2: 1$
Mechanical Properties of Fluids

142827 A water film is formed between the two straight parallel wires, each of length $10 \mathrm{~cm}$, kept at a separation of $0.5 \mathrm{~cm}$. Now, the separation between them is increased by $1 \mathrm{~mm}$ without breaking the water film. The work done for this is
( Surface tension of water $=7.2 \times 10^{-2} \mathrm{Nm}^{-1}$ )

1 $1.44 \times 10^{-5} \mathrm{~J}$
2 $5.76 \times 10^{-5} \mathrm{~J}$
3 $7.22 \times 10^{-6} \mathrm{~J}$
4 $2.88 \times 10^{-5} \mathrm{~J}$
Mechanical Properties of Fluids

142829 If the surface tension of a soap solution is $3 \times$ $10^{-2} \mathrm{~N} / \mathrm{m}$, then the work done in forming a soap film of $20 \mathrm{~cm} \times 5 \mathrm{~cm}$ will be

1 $6 \times 10^{-3} \mathrm{~J}$
2 $6 \mathrm{~J}$
3 $6 \times 10^{-4} \mathrm{~J}$
4 $6 \times 10^{-2} \mathrm{~J}$
Mechanical Properties of Fluids

142825 The surface tension of a liquid is $5 \mathrm{~N} / \mathrm{m}$. If a film is held on a ring of area $0.02 \mathrm{~m}^{2}$, its total surface energy is about :

1 $2 \times 10^{-2} \mathrm{~J}$
2 $2.5 \times 10^{-2} \mathrm{~J}$
3 $2 \times 10^{-1} \mathrm{~J}$
4 $3 \times 10^{-1} \mathrm{~J}$
Mechanical Properties of Fluids

142826 Pressure inside two soap bubbles are 1.01 and 1.02 atm. Ratio between their volumes is :

1 $102: 101$
2 $(102)^{3}:(103)^{3}$
3 $8: 1$
4 $2: 1$
Mechanical Properties of Fluids

142827 A water film is formed between the two straight parallel wires, each of length $10 \mathrm{~cm}$, kept at a separation of $0.5 \mathrm{~cm}$. Now, the separation between them is increased by $1 \mathrm{~mm}$ without breaking the water film. The work done for this is
( Surface tension of water $=7.2 \times 10^{-2} \mathrm{Nm}^{-1}$ )

1 $1.44 \times 10^{-5} \mathrm{~J}$
2 $5.76 \times 10^{-5} \mathrm{~J}$
3 $7.22 \times 10^{-6} \mathrm{~J}$
4 $2.88 \times 10^{-5} \mathrm{~J}$
Mechanical Properties of Fluids

142829 If the surface tension of a soap solution is $3 \times$ $10^{-2} \mathrm{~N} / \mathrm{m}$, then the work done in forming a soap film of $20 \mathrm{~cm} \times 5 \mathrm{~cm}$ will be

1 $6 \times 10^{-3} \mathrm{~J}$
2 $6 \mathrm{~J}$
3 $6 \times 10^{-4} \mathrm{~J}$
4 $6 \times 10^{-2} \mathrm{~J}$