01. Surface Tension and Surface Energy
Mechanical Properties of Fluids

142820 A U-shaped wire is dipped in a soap solution and removed. The thin soap film formed between the wire and light slider supports a weight of $1.5 \times 10^{2} \mathrm{~N}$. The length of the slider is $30 \mathrm{~cm}$. What is the surface tension of the film?

1 $3 \times 10^{-3} \mathrm{Nm}^{-1}$
2 $2 \times 10^{-5} \mathrm{Nm}^{-1}$
3 $4 \times 10^{-4} \mathrm{Nm}^{-1}$
4 $2.5 \times 10^{-2} \mathrm{Nm}^{-1}$
Mechanical Properties of Fluids

142821 The surface tension of soap solution is $\sigma$. What is the work done in blowing soap bubble of radius $r$ ?

1 $\pi r^{2} \sigma$
2 $2 \pi r^{2} \sigma$
3 $4 \pi r^{2} \sigma$
4 $8 \pi r^{2} \sigma$
Mechanical Properties of Fluids

142822 A soap film of surface tension $3 \times 10^{-2} \mathrm{Nm}^{-1}$ formed in rectangular frame, can support a straw. If the length of the film is $10 \mathrm{~cm}$, then the mass of the straw that film can support is-

1 $0.06 \mathrm{~g}$
2 $0.6 \mathrm{~g}$
3 $6 \mathrm{~g}$
4 $60 \mathrm{~g}$
Mechanical Properties of Fluids

142823 The surface tension of soap solution is $0.03 \mathrm{~N} / \mathrm{m}$. The amount of work done in forming a bubble of radius $5 \mathrm{~cm}$ is-

1 $3.77 \mathrm{~J}$
2 $1.885 \mathrm{~J}$
3 $0.95 \times 10^{-3} \mathrm{~J}$
4 $1.9 \times 10^{-3} \mathrm{~J}$
Mechanical Properties of Fluids

142824 The material of a wire has a density of 1.4 $\mathrm{g} / \mathrm{cm}^{3}$. It is not wetted by a liquid of surface tension $44 \mathrm{dyne} / \mathrm{cm}$, then the maximum radius of the wire which can float on the surface of liquid is-

1 $\frac{10}{28} \mathrm{~cm}$
2 $\frac{10}{14} \mathrm{~cm}$
3 $\frac{10}{7} \mathrm{~mm}$
4 $0.7 \mathrm{~cm}$
Mechanical Properties of Fluids

142820 A U-shaped wire is dipped in a soap solution and removed. The thin soap film formed between the wire and light slider supports a weight of $1.5 \times 10^{2} \mathrm{~N}$. The length of the slider is $30 \mathrm{~cm}$. What is the surface tension of the film?

1 $3 \times 10^{-3} \mathrm{Nm}^{-1}$
2 $2 \times 10^{-5} \mathrm{Nm}^{-1}$
3 $4 \times 10^{-4} \mathrm{Nm}^{-1}$
4 $2.5 \times 10^{-2} \mathrm{Nm}^{-1}$
Mechanical Properties of Fluids

142821 The surface tension of soap solution is $\sigma$. What is the work done in blowing soap bubble of radius $r$ ?

1 $\pi r^{2} \sigma$
2 $2 \pi r^{2} \sigma$
3 $4 \pi r^{2} \sigma$
4 $8 \pi r^{2} \sigma$
Mechanical Properties of Fluids

142822 A soap film of surface tension $3 \times 10^{-2} \mathrm{Nm}^{-1}$ formed in rectangular frame, can support a straw. If the length of the film is $10 \mathrm{~cm}$, then the mass of the straw that film can support is-

1 $0.06 \mathrm{~g}$
2 $0.6 \mathrm{~g}$
3 $6 \mathrm{~g}$
4 $60 \mathrm{~g}$
Mechanical Properties of Fluids

142823 The surface tension of soap solution is $0.03 \mathrm{~N} / \mathrm{m}$. The amount of work done in forming a bubble of radius $5 \mathrm{~cm}$ is-

1 $3.77 \mathrm{~J}$
2 $1.885 \mathrm{~J}$
3 $0.95 \times 10^{-3} \mathrm{~J}$
4 $1.9 \times 10^{-3} \mathrm{~J}$
Mechanical Properties of Fluids

142824 The material of a wire has a density of 1.4 $\mathrm{g} / \mathrm{cm}^{3}$. It is not wetted by a liquid of surface tension $44 \mathrm{dyne} / \mathrm{cm}$, then the maximum radius of the wire which can float on the surface of liquid is-

1 $\frac{10}{28} \mathrm{~cm}$
2 $\frac{10}{14} \mathrm{~cm}$
3 $\frac{10}{7} \mathrm{~mm}$
4 $0.7 \mathrm{~cm}$
Mechanical Properties of Fluids

142820 A U-shaped wire is dipped in a soap solution and removed. The thin soap film formed between the wire and light slider supports a weight of $1.5 \times 10^{2} \mathrm{~N}$. The length of the slider is $30 \mathrm{~cm}$. What is the surface tension of the film?

1 $3 \times 10^{-3} \mathrm{Nm}^{-1}$
2 $2 \times 10^{-5} \mathrm{Nm}^{-1}$
3 $4 \times 10^{-4} \mathrm{Nm}^{-1}$
4 $2.5 \times 10^{-2} \mathrm{Nm}^{-1}$
Mechanical Properties of Fluids

142821 The surface tension of soap solution is $\sigma$. What is the work done in blowing soap bubble of radius $r$ ?

1 $\pi r^{2} \sigma$
2 $2 \pi r^{2} \sigma$
3 $4 \pi r^{2} \sigma$
4 $8 \pi r^{2} \sigma$
Mechanical Properties of Fluids

142822 A soap film of surface tension $3 \times 10^{-2} \mathrm{Nm}^{-1}$ formed in rectangular frame, can support a straw. If the length of the film is $10 \mathrm{~cm}$, then the mass of the straw that film can support is-

1 $0.06 \mathrm{~g}$
2 $0.6 \mathrm{~g}$
3 $6 \mathrm{~g}$
4 $60 \mathrm{~g}$
Mechanical Properties of Fluids

142823 The surface tension of soap solution is $0.03 \mathrm{~N} / \mathrm{m}$. The amount of work done in forming a bubble of radius $5 \mathrm{~cm}$ is-

1 $3.77 \mathrm{~J}$
2 $1.885 \mathrm{~J}$
3 $0.95 \times 10^{-3} \mathrm{~J}$
4 $1.9 \times 10^{-3} \mathrm{~J}$
Mechanical Properties of Fluids

142824 The material of a wire has a density of 1.4 $\mathrm{g} / \mathrm{cm}^{3}$. It is not wetted by a liquid of surface tension $44 \mathrm{dyne} / \mathrm{cm}$, then the maximum radius of the wire which can float on the surface of liquid is-

1 $\frac{10}{28} \mathrm{~cm}$
2 $\frac{10}{14} \mathrm{~cm}$
3 $\frac{10}{7} \mathrm{~mm}$
4 $0.7 \mathrm{~cm}$
Mechanical Properties of Fluids

142820 A U-shaped wire is dipped in a soap solution and removed. The thin soap film formed between the wire and light slider supports a weight of $1.5 \times 10^{2} \mathrm{~N}$. The length of the slider is $30 \mathrm{~cm}$. What is the surface tension of the film?

1 $3 \times 10^{-3} \mathrm{Nm}^{-1}$
2 $2 \times 10^{-5} \mathrm{Nm}^{-1}$
3 $4 \times 10^{-4} \mathrm{Nm}^{-1}$
4 $2.5 \times 10^{-2} \mathrm{Nm}^{-1}$
Mechanical Properties of Fluids

142821 The surface tension of soap solution is $\sigma$. What is the work done in blowing soap bubble of radius $r$ ?

1 $\pi r^{2} \sigma$
2 $2 \pi r^{2} \sigma$
3 $4 \pi r^{2} \sigma$
4 $8 \pi r^{2} \sigma$
Mechanical Properties of Fluids

142822 A soap film of surface tension $3 \times 10^{-2} \mathrm{Nm}^{-1}$ formed in rectangular frame, can support a straw. If the length of the film is $10 \mathrm{~cm}$, then the mass of the straw that film can support is-

1 $0.06 \mathrm{~g}$
2 $0.6 \mathrm{~g}$
3 $6 \mathrm{~g}$
4 $60 \mathrm{~g}$
Mechanical Properties of Fluids

142823 The surface tension of soap solution is $0.03 \mathrm{~N} / \mathrm{m}$. The amount of work done in forming a bubble of radius $5 \mathrm{~cm}$ is-

1 $3.77 \mathrm{~J}$
2 $1.885 \mathrm{~J}$
3 $0.95 \times 10^{-3} \mathrm{~J}$
4 $1.9 \times 10^{-3} \mathrm{~J}$
Mechanical Properties of Fluids

142824 The material of a wire has a density of 1.4 $\mathrm{g} / \mathrm{cm}^{3}$. It is not wetted by a liquid of surface tension $44 \mathrm{dyne} / \mathrm{cm}$, then the maximum radius of the wire which can float on the surface of liquid is-

1 $\frac{10}{28} \mathrm{~cm}$
2 $\frac{10}{14} \mathrm{~cm}$
3 $\frac{10}{7} \mathrm{~mm}$
4 $0.7 \mathrm{~cm}$
Mechanical Properties of Fluids

142820 A U-shaped wire is dipped in a soap solution and removed. The thin soap film formed between the wire and light slider supports a weight of $1.5 \times 10^{2} \mathrm{~N}$. The length of the slider is $30 \mathrm{~cm}$. What is the surface tension of the film?

1 $3 \times 10^{-3} \mathrm{Nm}^{-1}$
2 $2 \times 10^{-5} \mathrm{Nm}^{-1}$
3 $4 \times 10^{-4} \mathrm{Nm}^{-1}$
4 $2.5 \times 10^{-2} \mathrm{Nm}^{-1}$
Mechanical Properties of Fluids

142821 The surface tension of soap solution is $\sigma$. What is the work done in blowing soap bubble of radius $r$ ?

1 $\pi r^{2} \sigma$
2 $2 \pi r^{2} \sigma$
3 $4 \pi r^{2} \sigma$
4 $8 \pi r^{2} \sigma$
Mechanical Properties of Fluids

142822 A soap film of surface tension $3 \times 10^{-2} \mathrm{Nm}^{-1}$ formed in rectangular frame, can support a straw. If the length of the film is $10 \mathrm{~cm}$, then the mass of the straw that film can support is-

1 $0.06 \mathrm{~g}$
2 $0.6 \mathrm{~g}$
3 $6 \mathrm{~g}$
4 $60 \mathrm{~g}$
Mechanical Properties of Fluids

142823 The surface tension of soap solution is $0.03 \mathrm{~N} / \mathrm{m}$. The amount of work done in forming a bubble of radius $5 \mathrm{~cm}$ is-

1 $3.77 \mathrm{~J}$
2 $1.885 \mathrm{~J}$
3 $0.95 \times 10^{-3} \mathrm{~J}$
4 $1.9 \times 10^{-3} \mathrm{~J}$
Mechanical Properties of Fluids

142824 The material of a wire has a density of 1.4 $\mathrm{g} / \mathrm{cm}^{3}$. It is not wetted by a liquid of surface tension $44 \mathrm{dyne} / \mathrm{cm}$, then the maximum radius of the wire which can float on the surface of liquid is-

1 $\frac{10}{28} \mathrm{~cm}$
2 $\frac{10}{14} \mathrm{~cm}$
3 $\frac{10}{7} \mathrm{~mm}$
4 $0.7 \mathrm{~cm}$