00. Fluid Property (Pressure, Density), Viscosity
Mechanical Properties of Fluids

142730 A rain drop of radius $0.3 \mathrm{~mm}$ has a terminal velocity in air $1 \mathrm{~ms}^{-1}$. The viscosity of air is $18 \times 10^{-5}$ poise. Find the viscous force on the rain drops.

1 $2.05 \times 10^{-7} \mathrm{~N}$
2 $.3018 \times 10^{-7} \mathrm{~N}$
3 $1.05 \times 10^{-7} \mathrm{~N}$
4 $2.058 \times 10^{-7} \mathrm{~N}$
Mechanical Properties of Fluids

142732 An anchor of a shop, made of iron with density $7870 \mathrm{~kg} / \mathrm{m}^{3}$ appears $210 \mathrm{~N}$ lighter in water. Calculate the volume of anchor and its weight in air
$\text { (Take } \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2} \text { ) }$

1 $1.78 \times 10^{-2} \mathrm{~m}^{3}, 2.10 \mathrm{kN}$
2 $2.14 \times 10^{-2} \mathrm{~m}^{3}, 1.65 \mathrm{kN}$
3 $5.87 \times 10^{-2} \mathrm{~m}^{3}, 3.75 \mathrm{kN}$
4 $7.87 \times 10^{-2} \mathrm{~m}^{3}, 5.67 \mathrm{kN}$
Mechanical Properties of Fluids

142733 A barometer is constructed using a liquid $\left(\right.$ density $\left.=760 \mathrm{~kg} / \mathrm{m}^{3}\right)$. What would be the height of the liquid column, when a mercury barometer reads $76 \mathrm{~cm}$ ? (Density of mercury $=13600 \mathrm{~kg} / \mathrm{m}^{3}$ )

1 $1.36 \mathrm{~m}$
2 $13.6 \mathrm{~m}$
3 $136 \mathrm{~m}$
4 $0.76 \mathrm{~m}$
Mechanical Properties of Fluids

142734 In a U-tube as shown in a figure, water and oil are in the left side and right side of the tube respectively. The heights from the bottom for water and oil columns are $15 \mathrm{~cm}$ and $20 \mathrm{~cm}$ respectively. The density of the oil is [take $\rho_{\text {water }}$ $=1000 \mathrm{~kg} / \mathrm{m}^{3}$ ]

1 $1200 \mathrm{~kg} / \mathrm{m} 3$
2 $750 \mathrm{~kg} / \mathrm{m} 3$
3 $1000 \mathrm{~kg} / \mathrm{m} 3$
4 $1333 \mathrm{~kg} / \mathrm{m} 3$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Mechanical Properties of Fluids

142730 A rain drop of radius $0.3 \mathrm{~mm}$ has a terminal velocity in air $1 \mathrm{~ms}^{-1}$. The viscosity of air is $18 \times 10^{-5}$ poise. Find the viscous force on the rain drops.

1 $2.05 \times 10^{-7} \mathrm{~N}$
2 $.3018 \times 10^{-7} \mathrm{~N}$
3 $1.05 \times 10^{-7} \mathrm{~N}$
4 $2.058 \times 10^{-7} \mathrm{~N}$
Mechanical Properties of Fluids

142732 An anchor of a shop, made of iron with density $7870 \mathrm{~kg} / \mathrm{m}^{3}$ appears $210 \mathrm{~N}$ lighter in water. Calculate the volume of anchor and its weight in air
$\text { (Take } \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2} \text { ) }$

1 $1.78 \times 10^{-2} \mathrm{~m}^{3}, 2.10 \mathrm{kN}$
2 $2.14 \times 10^{-2} \mathrm{~m}^{3}, 1.65 \mathrm{kN}$
3 $5.87 \times 10^{-2} \mathrm{~m}^{3}, 3.75 \mathrm{kN}$
4 $7.87 \times 10^{-2} \mathrm{~m}^{3}, 5.67 \mathrm{kN}$
Mechanical Properties of Fluids

142733 A barometer is constructed using a liquid $\left(\right.$ density $\left.=760 \mathrm{~kg} / \mathrm{m}^{3}\right)$. What would be the height of the liquid column, when a mercury barometer reads $76 \mathrm{~cm}$ ? (Density of mercury $=13600 \mathrm{~kg} / \mathrm{m}^{3}$ )

1 $1.36 \mathrm{~m}$
2 $13.6 \mathrm{~m}$
3 $136 \mathrm{~m}$
4 $0.76 \mathrm{~m}$
Mechanical Properties of Fluids

142734 In a U-tube as shown in a figure, water and oil are in the left side and right side of the tube respectively. The heights from the bottom for water and oil columns are $15 \mathrm{~cm}$ and $20 \mathrm{~cm}$ respectively. The density of the oil is [take $\rho_{\text {water }}$ $=1000 \mathrm{~kg} / \mathrm{m}^{3}$ ]

1 $1200 \mathrm{~kg} / \mathrm{m} 3$
2 $750 \mathrm{~kg} / \mathrm{m} 3$
3 $1000 \mathrm{~kg} / \mathrm{m} 3$
4 $1333 \mathrm{~kg} / \mathrm{m} 3$
Mechanical Properties of Fluids

142730 A rain drop of radius $0.3 \mathrm{~mm}$ has a terminal velocity in air $1 \mathrm{~ms}^{-1}$. The viscosity of air is $18 \times 10^{-5}$ poise. Find the viscous force on the rain drops.

1 $2.05 \times 10^{-7} \mathrm{~N}$
2 $.3018 \times 10^{-7} \mathrm{~N}$
3 $1.05 \times 10^{-7} \mathrm{~N}$
4 $2.058 \times 10^{-7} \mathrm{~N}$
Mechanical Properties of Fluids

142732 An anchor of a shop, made of iron with density $7870 \mathrm{~kg} / \mathrm{m}^{3}$ appears $210 \mathrm{~N}$ lighter in water. Calculate the volume of anchor and its weight in air
$\text { (Take } \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2} \text { ) }$

1 $1.78 \times 10^{-2} \mathrm{~m}^{3}, 2.10 \mathrm{kN}$
2 $2.14 \times 10^{-2} \mathrm{~m}^{3}, 1.65 \mathrm{kN}$
3 $5.87 \times 10^{-2} \mathrm{~m}^{3}, 3.75 \mathrm{kN}$
4 $7.87 \times 10^{-2} \mathrm{~m}^{3}, 5.67 \mathrm{kN}$
Mechanical Properties of Fluids

142733 A barometer is constructed using a liquid $\left(\right.$ density $\left.=760 \mathrm{~kg} / \mathrm{m}^{3}\right)$. What would be the height of the liquid column, when a mercury barometer reads $76 \mathrm{~cm}$ ? (Density of mercury $=13600 \mathrm{~kg} / \mathrm{m}^{3}$ )

1 $1.36 \mathrm{~m}$
2 $13.6 \mathrm{~m}$
3 $136 \mathrm{~m}$
4 $0.76 \mathrm{~m}$
Mechanical Properties of Fluids

142734 In a U-tube as shown in a figure, water and oil are in the left side and right side of the tube respectively. The heights from the bottom for water and oil columns are $15 \mathrm{~cm}$ and $20 \mathrm{~cm}$ respectively. The density of the oil is [take $\rho_{\text {water }}$ $=1000 \mathrm{~kg} / \mathrm{m}^{3}$ ]

1 $1200 \mathrm{~kg} / \mathrm{m} 3$
2 $750 \mathrm{~kg} / \mathrm{m} 3$
3 $1000 \mathrm{~kg} / \mathrm{m} 3$
4 $1333 \mathrm{~kg} / \mathrm{m} 3$
Mechanical Properties of Fluids

142730 A rain drop of radius $0.3 \mathrm{~mm}$ has a terminal velocity in air $1 \mathrm{~ms}^{-1}$. The viscosity of air is $18 \times 10^{-5}$ poise. Find the viscous force on the rain drops.

1 $2.05 \times 10^{-7} \mathrm{~N}$
2 $.3018 \times 10^{-7} \mathrm{~N}$
3 $1.05 \times 10^{-7} \mathrm{~N}$
4 $2.058 \times 10^{-7} \mathrm{~N}$
Mechanical Properties of Fluids

142732 An anchor of a shop, made of iron with density $7870 \mathrm{~kg} / \mathrm{m}^{3}$ appears $210 \mathrm{~N}$ lighter in water. Calculate the volume of anchor and its weight in air
$\text { (Take } \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2} \text { ) }$

1 $1.78 \times 10^{-2} \mathrm{~m}^{3}, 2.10 \mathrm{kN}$
2 $2.14 \times 10^{-2} \mathrm{~m}^{3}, 1.65 \mathrm{kN}$
3 $5.87 \times 10^{-2} \mathrm{~m}^{3}, 3.75 \mathrm{kN}$
4 $7.87 \times 10^{-2} \mathrm{~m}^{3}, 5.67 \mathrm{kN}$
Mechanical Properties of Fluids

142733 A barometer is constructed using a liquid $\left(\right.$ density $\left.=760 \mathrm{~kg} / \mathrm{m}^{3}\right)$. What would be the height of the liquid column, when a mercury barometer reads $76 \mathrm{~cm}$ ? (Density of mercury $=13600 \mathrm{~kg} / \mathrm{m}^{3}$ )

1 $1.36 \mathrm{~m}$
2 $13.6 \mathrm{~m}$
3 $136 \mathrm{~m}$
4 $0.76 \mathrm{~m}$
Mechanical Properties of Fluids

142734 In a U-tube as shown in a figure, water and oil are in the left side and right side of the tube respectively. The heights from the bottom for water and oil columns are $15 \mathrm{~cm}$ and $20 \mathrm{~cm}$ respectively. The density of the oil is [take $\rho_{\text {water }}$ $=1000 \mathrm{~kg} / \mathrm{m}^{3}$ ]

1 $1200 \mathrm{~kg} / \mathrm{m} 3$
2 $750 \mathrm{~kg} / \mathrm{m} 3$
3 $1000 \mathrm{~kg} / \mathrm{m} 3$
4 $1333 \mathrm{~kg} / \mathrm{m} 3$