00. Fluid Property (Pressure, Density), Viscosity
Mechanical Properties of Fluids

142723 A body of density $d_{1}$ is counter poised by $M g$ of weights of density $d_{2}$ in air of density $d$. Then the true mass of the body is

1 $\mathrm{M}$
2 $M\left(\frac{d_{2}-d}{d_{2}}\right)$
3 $M\left(\frac{d_{1}-d}{d_{1}}\right)$
4 $\frac{\operatorname{Md}_{1}\left(\mathrm{~d}_{2}-\mathrm{d}\right)}{\mathrm{d}_{2}\left(\mathrm{~d}_{1}-\mathrm{d}\right)}$
Mechanical Properties of Fluids

142725 A metal plate of area $100 \mathrm{~cm}^{2}$ is lying on a liquid layer of thickness $2 \mathrm{~mm}$. If the coefficient of viscosity of the liquid is $2 \mathrm{~N}$. $\mathrm{s}^{-2} \mathrm{~m}^{-2}$, then find the minimum horizontal force required to move the plate with a speed of $1 \mathrm{~cm} . \mathrm{s}^{-1}$

1 $0.1 \mathrm{~N}$
2 $1 \mathrm{~N}$
3 $0.5 \mathrm{~N}$
4 $0.25 \mathrm{~N}$
Mechanical Properties of Fluids

142727 Find the Young's modulus of the wire whose stress-strain curve is as shown in the following figure:

1 $8 \times 10^{11} \mathrm{~N} . \mathrm{m}^{-2}$
2 $24 \times 10^{11} \mathrm{~N} \cdot \mathrm{m}^{-2}$
3 $10 \times 10^{11} \mathrm{~N} \cdot \mathrm{m}^{-2}$
4 $2 \times 10^{11} \mathrm{~N} \cdot \mathrm{m}^{-2}$
Mechanical Properties of Fluids

142728 An air bubble of radius $1.0 \mathrm{~cm}$ rises with a constant speed of $3.5 \mathrm{~mm} \mathrm{~s}^{-1}$ through a liquid of density $1.75 \times 10^{3} \mathrm{kgm}^{-3}$. Neglecting the density of air, the coefficient of viscosity of the liquid is $\mathbf{k g m}^{-1} \mathbf{s}^{-1}$

1 54.5
2 109
3 163.5
4 218
Mechanical Properties of Fluids

142729 A flat plate of area $10 \mathrm{~cm}^{2}$ is separated and a large plate by a layer of Glycerine $1 \mathrm{~mm}$ thick. If the coefficient of viscosity of Glycerine is $\mathbf{2 0}$ poise. The force required to keep the plate moving the velocity of $1 \mathrm{~cm} . \mathrm{s}^{-1}$ is

1 80 dyne
2 200 dyne
3 800 dyne
4 2000 dyne
Mechanical Properties of Fluids

142723 A body of density $d_{1}$ is counter poised by $M g$ of weights of density $d_{2}$ in air of density $d$. Then the true mass of the body is

1 $\mathrm{M}$
2 $M\left(\frac{d_{2}-d}{d_{2}}\right)$
3 $M\left(\frac{d_{1}-d}{d_{1}}\right)$
4 $\frac{\operatorname{Md}_{1}\left(\mathrm{~d}_{2}-\mathrm{d}\right)}{\mathrm{d}_{2}\left(\mathrm{~d}_{1}-\mathrm{d}\right)}$
Mechanical Properties of Fluids

142725 A metal plate of area $100 \mathrm{~cm}^{2}$ is lying on a liquid layer of thickness $2 \mathrm{~mm}$. If the coefficient of viscosity of the liquid is $2 \mathrm{~N}$. $\mathrm{s}^{-2} \mathrm{~m}^{-2}$, then find the minimum horizontal force required to move the plate with a speed of $1 \mathrm{~cm} . \mathrm{s}^{-1}$

1 $0.1 \mathrm{~N}$
2 $1 \mathrm{~N}$
3 $0.5 \mathrm{~N}$
4 $0.25 \mathrm{~N}$
Mechanical Properties of Fluids

142727 Find the Young's modulus of the wire whose stress-strain curve is as shown in the following figure:

1 $8 \times 10^{11} \mathrm{~N} . \mathrm{m}^{-2}$
2 $24 \times 10^{11} \mathrm{~N} \cdot \mathrm{m}^{-2}$
3 $10 \times 10^{11} \mathrm{~N} \cdot \mathrm{m}^{-2}$
4 $2 \times 10^{11} \mathrm{~N} \cdot \mathrm{m}^{-2}$
Mechanical Properties of Fluids

142728 An air bubble of radius $1.0 \mathrm{~cm}$ rises with a constant speed of $3.5 \mathrm{~mm} \mathrm{~s}^{-1}$ through a liquid of density $1.75 \times 10^{3} \mathrm{kgm}^{-3}$. Neglecting the density of air, the coefficient of viscosity of the liquid is $\mathbf{k g m}^{-1} \mathbf{s}^{-1}$

1 54.5
2 109
3 163.5
4 218
Mechanical Properties of Fluids

142729 A flat plate of area $10 \mathrm{~cm}^{2}$ is separated and a large plate by a layer of Glycerine $1 \mathrm{~mm}$ thick. If the coefficient of viscosity of Glycerine is $\mathbf{2 0}$ poise. The force required to keep the plate moving the velocity of $1 \mathrm{~cm} . \mathrm{s}^{-1}$ is

1 80 dyne
2 200 dyne
3 800 dyne
4 2000 dyne
Mechanical Properties of Fluids

142723 A body of density $d_{1}$ is counter poised by $M g$ of weights of density $d_{2}$ in air of density $d$. Then the true mass of the body is

1 $\mathrm{M}$
2 $M\left(\frac{d_{2}-d}{d_{2}}\right)$
3 $M\left(\frac{d_{1}-d}{d_{1}}\right)$
4 $\frac{\operatorname{Md}_{1}\left(\mathrm{~d}_{2}-\mathrm{d}\right)}{\mathrm{d}_{2}\left(\mathrm{~d}_{1}-\mathrm{d}\right)}$
Mechanical Properties of Fluids

142725 A metal plate of area $100 \mathrm{~cm}^{2}$ is lying on a liquid layer of thickness $2 \mathrm{~mm}$. If the coefficient of viscosity of the liquid is $2 \mathrm{~N}$. $\mathrm{s}^{-2} \mathrm{~m}^{-2}$, then find the minimum horizontal force required to move the plate with a speed of $1 \mathrm{~cm} . \mathrm{s}^{-1}$

1 $0.1 \mathrm{~N}$
2 $1 \mathrm{~N}$
3 $0.5 \mathrm{~N}$
4 $0.25 \mathrm{~N}$
Mechanical Properties of Fluids

142727 Find the Young's modulus of the wire whose stress-strain curve is as shown in the following figure:

1 $8 \times 10^{11} \mathrm{~N} . \mathrm{m}^{-2}$
2 $24 \times 10^{11} \mathrm{~N} \cdot \mathrm{m}^{-2}$
3 $10 \times 10^{11} \mathrm{~N} \cdot \mathrm{m}^{-2}$
4 $2 \times 10^{11} \mathrm{~N} \cdot \mathrm{m}^{-2}$
Mechanical Properties of Fluids

142728 An air bubble of radius $1.0 \mathrm{~cm}$ rises with a constant speed of $3.5 \mathrm{~mm} \mathrm{~s}^{-1}$ through a liquid of density $1.75 \times 10^{3} \mathrm{kgm}^{-3}$. Neglecting the density of air, the coefficient of viscosity of the liquid is $\mathbf{k g m}^{-1} \mathbf{s}^{-1}$

1 54.5
2 109
3 163.5
4 218
Mechanical Properties of Fluids

142729 A flat plate of area $10 \mathrm{~cm}^{2}$ is separated and a large plate by a layer of Glycerine $1 \mathrm{~mm}$ thick. If the coefficient of viscosity of Glycerine is $\mathbf{2 0}$ poise. The force required to keep the plate moving the velocity of $1 \mathrm{~cm} . \mathrm{s}^{-1}$ is

1 80 dyne
2 200 dyne
3 800 dyne
4 2000 dyne
Mechanical Properties of Fluids

142723 A body of density $d_{1}$ is counter poised by $M g$ of weights of density $d_{2}$ in air of density $d$. Then the true mass of the body is

1 $\mathrm{M}$
2 $M\left(\frac{d_{2}-d}{d_{2}}\right)$
3 $M\left(\frac{d_{1}-d}{d_{1}}\right)$
4 $\frac{\operatorname{Md}_{1}\left(\mathrm{~d}_{2}-\mathrm{d}\right)}{\mathrm{d}_{2}\left(\mathrm{~d}_{1}-\mathrm{d}\right)}$
Mechanical Properties of Fluids

142725 A metal plate of area $100 \mathrm{~cm}^{2}$ is lying on a liquid layer of thickness $2 \mathrm{~mm}$. If the coefficient of viscosity of the liquid is $2 \mathrm{~N}$. $\mathrm{s}^{-2} \mathrm{~m}^{-2}$, then find the minimum horizontal force required to move the plate with a speed of $1 \mathrm{~cm} . \mathrm{s}^{-1}$

1 $0.1 \mathrm{~N}$
2 $1 \mathrm{~N}$
3 $0.5 \mathrm{~N}$
4 $0.25 \mathrm{~N}$
Mechanical Properties of Fluids

142727 Find the Young's modulus of the wire whose stress-strain curve is as shown in the following figure:

1 $8 \times 10^{11} \mathrm{~N} . \mathrm{m}^{-2}$
2 $24 \times 10^{11} \mathrm{~N} \cdot \mathrm{m}^{-2}$
3 $10 \times 10^{11} \mathrm{~N} \cdot \mathrm{m}^{-2}$
4 $2 \times 10^{11} \mathrm{~N} \cdot \mathrm{m}^{-2}$
Mechanical Properties of Fluids

142728 An air bubble of radius $1.0 \mathrm{~cm}$ rises with a constant speed of $3.5 \mathrm{~mm} \mathrm{~s}^{-1}$ through a liquid of density $1.75 \times 10^{3} \mathrm{kgm}^{-3}$. Neglecting the density of air, the coefficient of viscosity of the liquid is $\mathbf{k g m}^{-1} \mathbf{s}^{-1}$

1 54.5
2 109
3 163.5
4 218
Mechanical Properties of Fluids

142729 A flat plate of area $10 \mathrm{~cm}^{2}$ is separated and a large plate by a layer of Glycerine $1 \mathrm{~mm}$ thick. If the coefficient of viscosity of Glycerine is $\mathbf{2 0}$ poise. The force required to keep the plate moving the velocity of $1 \mathrm{~cm} . \mathrm{s}^{-1}$ is

1 80 dyne
2 200 dyne
3 800 dyne
4 2000 dyne
Mechanical Properties of Fluids

142723 A body of density $d_{1}$ is counter poised by $M g$ of weights of density $d_{2}$ in air of density $d$. Then the true mass of the body is

1 $\mathrm{M}$
2 $M\left(\frac{d_{2}-d}{d_{2}}\right)$
3 $M\left(\frac{d_{1}-d}{d_{1}}\right)$
4 $\frac{\operatorname{Md}_{1}\left(\mathrm{~d}_{2}-\mathrm{d}\right)}{\mathrm{d}_{2}\left(\mathrm{~d}_{1}-\mathrm{d}\right)}$
Mechanical Properties of Fluids

142725 A metal plate of area $100 \mathrm{~cm}^{2}$ is lying on a liquid layer of thickness $2 \mathrm{~mm}$. If the coefficient of viscosity of the liquid is $2 \mathrm{~N}$. $\mathrm{s}^{-2} \mathrm{~m}^{-2}$, then find the minimum horizontal force required to move the plate with a speed of $1 \mathrm{~cm} . \mathrm{s}^{-1}$

1 $0.1 \mathrm{~N}$
2 $1 \mathrm{~N}$
3 $0.5 \mathrm{~N}$
4 $0.25 \mathrm{~N}$
Mechanical Properties of Fluids

142727 Find the Young's modulus of the wire whose stress-strain curve is as shown in the following figure:

1 $8 \times 10^{11} \mathrm{~N} . \mathrm{m}^{-2}$
2 $24 \times 10^{11} \mathrm{~N} \cdot \mathrm{m}^{-2}$
3 $10 \times 10^{11} \mathrm{~N} \cdot \mathrm{m}^{-2}$
4 $2 \times 10^{11} \mathrm{~N} \cdot \mathrm{m}^{-2}$
Mechanical Properties of Fluids

142728 An air bubble of radius $1.0 \mathrm{~cm}$ rises with a constant speed of $3.5 \mathrm{~mm} \mathrm{~s}^{-1}$ through a liquid of density $1.75 \times 10^{3} \mathrm{kgm}^{-3}$. Neglecting the density of air, the coefficient of viscosity of the liquid is $\mathbf{k g m}^{-1} \mathbf{s}^{-1}$

1 54.5
2 109
3 163.5
4 218
Mechanical Properties of Fluids

142729 A flat plate of area $10 \mathrm{~cm}^{2}$ is separated and a large plate by a layer of Glycerine $1 \mathrm{~mm}$ thick. If the coefficient of viscosity of Glycerine is $\mathbf{2 0}$ poise. The force required to keep the plate moving the velocity of $1 \mathrm{~cm} . \mathrm{s}^{-1}$ is

1 80 dyne
2 200 dyne
3 800 dyne
4 2000 dyne