03. Stored Energy
Mechanical Properties of Solids

141147 A wire of natural length $l$, Young's modulus $Y$ and area of cross-section $A$ is extended by $x$. Then the energy stored in the wire is given by

1 $\frac{1}{2} \frac{\mathrm{YA}}{l} \mathrm{x}^{2}$
2 $\frac{1}{3} \frac{\mathrm{YA}}{l} \mathrm{x}^{2}$
3 $\frac{1}{2} \frac{\mathrm{Yl}}{\mathrm{A}} \mathrm{x}^{2}$
4 $\frac{1}{2} \frac{\mathrm{YA}}{l^{2}} \mathrm{x}^{2}$
5 $\frac{1}{2} \frac{\mathrm{A}}{\mathrm{Yl}} \mathrm{x}^{2}$
Mechanical Properties of Solids

141148 A wire of length $L$ and area of cross-section $A$ is stretched through a distance $x$ meter by applying a force $F$ along length, then the work done in this process is: ( $Y$ is Young's modulus of the material)

1 $\frac{1}{2}(\mathrm{~A} \cdot \mathrm{L})\left(\frac{\mathrm{Yx}}{\mathrm{L}}\right)\left(\frac{\mathrm{x}}{\mathrm{L}}\right)$
2 $(\mathrm{A} \cdot \mathrm{L})(\mathrm{YL})\left(\frac{\mathrm{x}}{\mathrm{L}}\right)$
3 $2(\mathrm{~A} \cdot \mathrm{L})(\mathrm{YL})\left(\frac{\mathrm{x}}{\mathrm{L}}\right)$
4 $3(\mathrm{~A} \cdot \mathrm{L})(\mathrm{YL})\left(\frac{\mathrm{x}}{\mathrm{L}}\right)$
5 $4(\mathrm{~A} \cdot \mathrm{L})(\mathrm{YL})\left(\frac{\mathrm{x}}{\mathrm{L}}\right)$
Mechanical Properties of Solids

141141 Proof resilience is related to

1 Potential energy stored in the elastic body
2 Stiffness of a beam
3 Elastic fatigue
4 Elastic relaxation
Mechanical Properties of Solids

141147 A wire of natural length $l$, Young's modulus $Y$ and area of cross-section $A$ is extended by $x$. Then the energy stored in the wire is given by

1 $\frac{1}{2} \frac{\mathrm{YA}}{l} \mathrm{x}^{2}$
2 $\frac{1}{3} \frac{\mathrm{YA}}{l} \mathrm{x}^{2}$
3 $\frac{1}{2} \frac{\mathrm{Yl}}{\mathrm{A}} \mathrm{x}^{2}$
4 $\frac{1}{2} \frac{\mathrm{YA}}{l^{2}} \mathrm{x}^{2}$
5 $\frac{1}{2} \frac{\mathrm{A}}{\mathrm{Yl}} \mathrm{x}^{2}$
Mechanical Properties of Solids

141148 A wire of length $L$ and area of cross-section $A$ is stretched through a distance $x$ meter by applying a force $F$ along length, then the work done in this process is: ( $Y$ is Young's modulus of the material)

1 $\frac{1}{2}(\mathrm{~A} \cdot \mathrm{L})\left(\frac{\mathrm{Yx}}{\mathrm{L}}\right)\left(\frac{\mathrm{x}}{\mathrm{L}}\right)$
2 $(\mathrm{A} \cdot \mathrm{L})(\mathrm{YL})\left(\frac{\mathrm{x}}{\mathrm{L}}\right)$
3 $2(\mathrm{~A} \cdot \mathrm{L})(\mathrm{YL})\left(\frac{\mathrm{x}}{\mathrm{L}}\right)$
4 $3(\mathrm{~A} \cdot \mathrm{L})(\mathrm{YL})\left(\frac{\mathrm{x}}{\mathrm{L}}\right)$
5 $4(\mathrm{~A} \cdot \mathrm{L})(\mathrm{YL})\left(\frac{\mathrm{x}}{\mathrm{L}}\right)$
Mechanical Properties of Solids

141141 Proof resilience is related to

1 Potential energy stored in the elastic body
2 Stiffness of a beam
3 Elastic fatigue
4 Elastic relaxation
Mechanical Properties of Solids

141147 A wire of natural length $l$, Young's modulus $Y$ and area of cross-section $A$ is extended by $x$. Then the energy stored in the wire is given by

1 $\frac{1}{2} \frac{\mathrm{YA}}{l} \mathrm{x}^{2}$
2 $\frac{1}{3} \frac{\mathrm{YA}}{l} \mathrm{x}^{2}$
3 $\frac{1}{2} \frac{\mathrm{Yl}}{\mathrm{A}} \mathrm{x}^{2}$
4 $\frac{1}{2} \frac{\mathrm{YA}}{l^{2}} \mathrm{x}^{2}$
5 $\frac{1}{2} \frac{\mathrm{A}}{\mathrm{Yl}} \mathrm{x}^{2}$
Mechanical Properties of Solids

141148 A wire of length $L$ and area of cross-section $A$ is stretched through a distance $x$ meter by applying a force $F$ along length, then the work done in this process is: ( $Y$ is Young's modulus of the material)

1 $\frac{1}{2}(\mathrm{~A} \cdot \mathrm{L})\left(\frac{\mathrm{Yx}}{\mathrm{L}}\right)\left(\frac{\mathrm{x}}{\mathrm{L}}\right)$
2 $(\mathrm{A} \cdot \mathrm{L})(\mathrm{YL})\left(\frac{\mathrm{x}}{\mathrm{L}}\right)$
3 $2(\mathrm{~A} \cdot \mathrm{L})(\mathrm{YL})\left(\frac{\mathrm{x}}{\mathrm{L}}\right)$
4 $3(\mathrm{~A} \cdot \mathrm{L})(\mathrm{YL})\left(\frac{\mathrm{x}}{\mathrm{L}}\right)$
5 $4(\mathrm{~A} \cdot \mathrm{L})(\mathrm{YL})\left(\frac{\mathrm{x}}{\mathrm{L}}\right)$
Mechanical Properties of Solids

141141 Proof resilience is related to

1 Potential energy stored in the elastic body
2 Stiffness of a beam
3 Elastic fatigue
4 Elastic relaxation