01. Young's Modulus and Bulk Modulus and Change in Length
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Mechanical Properties of Solids

141007 A copper wire of cross-sectional area $0.01 \mathrm{~cm}^{2}$ is under a tension of $22 \mathrm{~N}$. The decrease in the cross-sectional area is
$\left(\right.$ Young modulus $=1.1 \times 10^{11} \mathrm{Nm}^{-2}$, Poisson's ratio $=\mathbf{0 . 3 2}$ )

1 $0.128 \times 10^{-6} \mathrm{~cm}^{2}$
2 $128 \times 10^{-6} \mathrm{~cm}^{2}$
3 $12.8 \times 10^{-6} \mathrm{~cm}^{2}$
4 $1.28 \times 10^{-6} \mathrm{~cm}^{2}$
Mechanical Properties of Solids

141009 The inter atomic distance for a metal is $3 \times 10^{-10}$ $\mathrm{m}$. If the inter atomic force constant is $3.6 \times 10^{-9}$ $\mathrm{N} \AA^{-1}$, then the Young's modulus (in $\mathrm{Nm}^{-2}$ ) will be

1 $1.2 \times 10^{11}$
2 $4.2 \times 10^{11}$
3 $10.8 \times 10^{8}$
4 $2.4 \times 10^{10}$
Mechanical Properties of Solids

141010 The stress along the length of a rod (with rectangular cross-section) is $1 \%$ of the Young's modulus of its material. What is the approximate percentage of change of its volume? (Poisson's ratio of the material of the $\operatorname{rod}$ is 0.3$)$.

1 $3 \%$
2 $1 \%$
3 $0.7 \%$
4 $0.4 \%$
Mechanical Properties of Solids

141011 The rubber cord of a catapult has a crosssectional area $1 \mathrm{~mm}^{2}$ and unstretched length 10 $\mathrm{cm}$. If it is stretched to a length $12 \mathrm{~cm}$ and a body of mass $5 \mathrm{~g}$ is projected from it, then the velocity of projection of the body is
(Young's modulus of rubber $=5 \times 10^{8} \mathrm{Nm}^{-2}$ )

1 $5 \mathrm{~ms}^{-1}$
2 $10 \mathrm{~ms}^{-1}$
3 $15 \mathrm{~ms}^{-1}$
4 $20 \mathrm{~ms}^{-1}$
Mechanical Properties of Solids

141007 A copper wire of cross-sectional area $0.01 \mathrm{~cm}^{2}$ is under a tension of $22 \mathrm{~N}$. The decrease in the cross-sectional area is
$\left(\right.$ Young modulus $=1.1 \times 10^{11} \mathrm{Nm}^{-2}$, Poisson's ratio $=\mathbf{0 . 3 2}$ )

1 $0.128 \times 10^{-6} \mathrm{~cm}^{2}$
2 $128 \times 10^{-6} \mathrm{~cm}^{2}$
3 $12.8 \times 10^{-6} \mathrm{~cm}^{2}$
4 $1.28 \times 10^{-6} \mathrm{~cm}^{2}$
Mechanical Properties of Solids

141009 The inter atomic distance for a metal is $3 \times 10^{-10}$ $\mathrm{m}$. If the inter atomic force constant is $3.6 \times 10^{-9}$ $\mathrm{N} \AA^{-1}$, then the Young's modulus (in $\mathrm{Nm}^{-2}$ ) will be

1 $1.2 \times 10^{11}$
2 $4.2 \times 10^{11}$
3 $10.8 \times 10^{8}$
4 $2.4 \times 10^{10}$
Mechanical Properties of Solids

141010 The stress along the length of a rod (with rectangular cross-section) is $1 \%$ of the Young's modulus of its material. What is the approximate percentage of change of its volume? (Poisson's ratio of the material of the $\operatorname{rod}$ is 0.3$)$.

1 $3 \%$
2 $1 \%$
3 $0.7 \%$
4 $0.4 \%$
Mechanical Properties of Solids

141011 The rubber cord of a catapult has a crosssectional area $1 \mathrm{~mm}^{2}$ and unstretched length 10 $\mathrm{cm}$. If it is stretched to a length $12 \mathrm{~cm}$ and a body of mass $5 \mathrm{~g}$ is projected from it, then the velocity of projection of the body is
(Young's modulus of rubber $=5 \times 10^{8} \mathrm{Nm}^{-2}$ )

1 $5 \mathrm{~ms}^{-1}$
2 $10 \mathrm{~ms}^{-1}$
3 $15 \mathrm{~ms}^{-1}$
4 $20 \mathrm{~ms}^{-1}$
Mechanical Properties of Solids

141007 A copper wire of cross-sectional area $0.01 \mathrm{~cm}^{2}$ is under a tension of $22 \mathrm{~N}$. The decrease in the cross-sectional area is
$\left(\right.$ Young modulus $=1.1 \times 10^{11} \mathrm{Nm}^{-2}$, Poisson's ratio $=\mathbf{0 . 3 2}$ )

1 $0.128 \times 10^{-6} \mathrm{~cm}^{2}$
2 $128 \times 10^{-6} \mathrm{~cm}^{2}$
3 $12.8 \times 10^{-6} \mathrm{~cm}^{2}$
4 $1.28 \times 10^{-6} \mathrm{~cm}^{2}$
Mechanical Properties of Solids

141009 The inter atomic distance for a metal is $3 \times 10^{-10}$ $\mathrm{m}$. If the inter atomic force constant is $3.6 \times 10^{-9}$ $\mathrm{N} \AA^{-1}$, then the Young's modulus (in $\mathrm{Nm}^{-2}$ ) will be

1 $1.2 \times 10^{11}$
2 $4.2 \times 10^{11}$
3 $10.8 \times 10^{8}$
4 $2.4 \times 10^{10}$
Mechanical Properties of Solids

141010 The stress along the length of a rod (with rectangular cross-section) is $1 \%$ of the Young's modulus of its material. What is the approximate percentage of change of its volume? (Poisson's ratio of the material of the $\operatorname{rod}$ is 0.3$)$.

1 $3 \%$
2 $1 \%$
3 $0.7 \%$
4 $0.4 \%$
Mechanical Properties of Solids

141011 The rubber cord of a catapult has a crosssectional area $1 \mathrm{~mm}^{2}$ and unstretched length 10 $\mathrm{cm}$. If it is stretched to a length $12 \mathrm{~cm}$ and a body of mass $5 \mathrm{~g}$ is projected from it, then the velocity of projection of the body is
(Young's modulus of rubber $=5 \times 10^{8} \mathrm{Nm}^{-2}$ )

1 $5 \mathrm{~ms}^{-1}$
2 $10 \mathrm{~ms}^{-1}$
3 $15 \mathrm{~ms}^{-1}$
4 $20 \mathrm{~ms}^{-1}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Mechanical Properties of Solids

141007 A copper wire of cross-sectional area $0.01 \mathrm{~cm}^{2}$ is under a tension of $22 \mathrm{~N}$. The decrease in the cross-sectional area is
$\left(\right.$ Young modulus $=1.1 \times 10^{11} \mathrm{Nm}^{-2}$, Poisson's ratio $=\mathbf{0 . 3 2}$ )

1 $0.128 \times 10^{-6} \mathrm{~cm}^{2}$
2 $128 \times 10^{-6} \mathrm{~cm}^{2}$
3 $12.8 \times 10^{-6} \mathrm{~cm}^{2}$
4 $1.28 \times 10^{-6} \mathrm{~cm}^{2}$
Mechanical Properties of Solids

141009 The inter atomic distance for a metal is $3 \times 10^{-10}$ $\mathrm{m}$. If the inter atomic force constant is $3.6 \times 10^{-9}$ $\mathrm{N} \AA^{-1}$, then the Young's modulus (in $\mathrm{Nm}^{-2}$ ) will be

1 $1.2 \times 10^{11}$
2 $4.2 \times 10^{11}$
3 $10.8 \times 10^{8}$
4 $2.4 \times 10^{10}$
Mechanical Properties of Solids

141010 The stress along the length of a rod (with rectangular cross-section) is $1 \%$ of the Young's modulus of its material. What is the approximate percentage of change of its volume? (Poisson's ratio of the material of the $\operatorname{rod}$ is 0.3$)$.

1 $3 \%$
2 $1 \%$
3 $0.7 \%$
4 $0.4 \%$
Mechanical Properties of Solids

141011 The rubber cord of a catapult has a crosssectional area $1 \mathrm{~mm}^{2}$ and unstretched length 10 $\mathrm{cm}$. If it is stretched to a length $12 \mathrm{~cm}$ and a body of mass $5 \mathrm{~g}$ is projected from it, then the velocity of projection of the body is
(Young's modulus of rubber $=5 \times 10^{8} \mathrm{Nm}^{-2}$ )

1 $5 \mathrm{~ms}^{-1}$
2 $10 \mathrm{~ms}^{-1}$
3 $15 \mathrm{~ms}^{-1}$
4 $20 \mathrm{~ms}^{-1}$