04. Escape Velocity, Orbital Velocity, Satellites Motion, Binding Energy
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Gravitation

138755 The orbital velocity of a satellite at a height $h$ above the surface of earth is $v$. The value of escape velocity from the same location is given by

1 $\sqrt{2} \mathrm{v}$
2 $\mathrm{v}$
3 $\frac{\mathrm{v}}{\sqrt{2}}$
4 $\frac{\mathrm{v}}{2}$
Gravitation

138757 The mass of mars is 0.11 times the mass of the earth and the radius of mars is 0.53 times the radius of the earth. The escape velocity from the earth's surface is $11.2 \mathrm{~km} \mathrm{~s}^{-1}$, the escape velocity of a body from mars's surface is

1 $1.12 \mathrm{~km} \mathrm{~s}^{-1}$
2 $0.51 \mathrm{~km} \mathrm{~s}^{-1}$
3 $5.1 \mathrm{~km} \mathrm{~s}^{-1}$
4 $10.2 \mathrm{~km} \mathrm{~s}^{-1}$
Gravitation

138758 The escape velocity form the surface of earth is $11.2 \mathrm{~km} \mathrm{~s}^{-1}$. What is the escape velocity in a planet whose radius is three times that of earth and on which the acceleration due to gravity is three times of that on earth?

1 $11.2 \mathrm{~km} \mathrm{~s}^{-1}$
2 $22.4 \mathrm{~km} \mathrm{~s}^{-1}$
3 $33.6 \mathrm{~km} \mathrm{~s}^{-1}$
4 $5.6 \mathrm{~km} \mathrm{~s}^{-1}$
Gravitation

138760 The escape velocity of a particle from the surface of the earth is given by

1 $(\mathrm{gR})^{1 / 2}$
2 $(2 \mathrm{gR})^{1 / 2}$
3 $(3 \mathrm{gR})^{1 / 2}$
4 $\left(\frac{\mathrm{gR}}{2}\right)^{2}$
Gravitation

138755 The orbital velocity of a satellite at a height $h$ above the surface of earth is $v$. The value of escape velocity from the same location is given by

1 $\sqrt{2} \mathrm{v}$
2 $\mathrm{v}$
3 $\frac{\mathrm{v}}{\sqrt{2}}$
4 $\frac{\mathrm{v}}{2}$
Gravitation

138757 The mass of mars is 0.11 times the mass of the earth and the radius of mars is 0.53 times the radius of the earth. The escape velocity from the earth's surface is $11.2 \mathrm{~km} \mathrm{~s}^{-1}$, the escape velocity of a body from mars's surface is

1 $1.12 \mathrm{~km} \mathrm{~s}^{-1}$
2 $0.51 \mathrm{~km} \mathrm{~s}^{-1}$
3 $5.1 \mathrm{~km} \mathrm{~s}^{-1}$
4 $10.2 \mathrm{~km} \mathrm{~s}^{-1}$
Gravitation

138758 The escape velocity form the surface of earth is $11.2 \mathrm{~km} \mathrm{~s}^{-1}$. What is the escape velocity in a planet whose radius is three times that of earth and on which the acceleration due to gravity is three times of that on earth?

1 $11.2 \mathrm{~km} \mathrm{~s}^{-1}$
2 $22.4 \mathrm{~km} \mathrm{~s}^{-1}$
3 $33.6 \mathrm{~km} \mathrm{~s}^{-1}$
4 $5.6 \mathrm{~km} \mathrm{~s}^{-1}$
Gravitation

138760 The escape velocity of a particle from the surface of the earth is given by

1 $(\mathrm{gR})^{1 / 2}$
2 $(2 \mathrm{gR})^{1 / 2}$
3 $(3 \mathrm{gR})^{1 / 2}$
4 $\left(\frac{\mathrm{gR}}{2}\right)^{2}$
Gravitation

138755 The orbital velocity of a satellite at a height $h$ above the surface of earth is $v$. The value of escape velocity from the same location is given by

1 $\sqrt{2} \mathrm{v}$
2 $\mathrm{v}$
3 $\frac{\mathrm{v}}{\sqrt{2}}$
4 $\frac{\mathrm{v}}{2}$
Gravitation

138757 The mass of mars is 0.11 times the mass of the earth and the radius of mars is 0.53 times the radius of the earth. The escape velocity from the earth's surface is $11.2 \mathrm{~km} \mathrm{~s}^{-1}$, the escape velocity of a body from mars's surface is

1 $1.12 \mathrm{~km} \mathrm{~s}^{-1}$
2 $0.51 \mathrm{~km} \mathrm{~s}^{-1}$
3 $5.1 \mathrm{~km} \mathrm{~s}^{-1}$
4 $10.2 \mathrm{~km} \mathrm{~s}^{-1}$
Gravitation

138758 The escape velocity form the surface of earth is $11.2 \mathrm{~km} \mathrm{~s}^{-1}$. What is the escape velocity in a planet whose radius is three times that of earth and on which the acceleration due to gravity is three times of that on earth?

1 $11.2 \mathrm{~km} \mathrm{~s}^{-1}$
2 $22.4 \mathrm{~km} \mathrm{~s}^{-1}$
3 $33.6 \mathrm{~km} \mathrm{~s}^{-1}$
4 $5.6 \mathrm{~km} \mathrm{~s}^{-1}$
Gravitation

138760 The escape velocity of a particle from the surface of the earth is given by

1 $(\mathrm{gR})^{1 / 2}$
2 $(2 \mathrm{gR})^{1 / 2}$
3 $(3 \mathrm{gR})^{1 / 2}$
4 $\left(\frac{\mathrm{gR}}{2}\right)^{2}$
Gravitation

138755 The orbital velocity of a satellite at a height $h$ above the surface of earth is $v$. The value of escape velocity from the same location is given by

1 $\sqrt{2} \mathrm{v}$
2 $\mathrm{v}$
3 $\frac{\mathrm{v}}{\sqrt{2}}$
4 $\frac{\mathrm{v}}{2}$
Gravitation

138757 The mass of mars is 0.11 times the mass of the earth and the radius of mars is 0.53 times the radius of the earth. The escape velocity from the earth's surface is $11.2 \mathrm{~km} \mathrm{~s}^{-1}$, the escape velocity of a body from mars's surface is

1 $1.12 \mathrm{~km} \mathrm{~s}^{-1}$
2 $0.51 \mathrm{~km} \mathrm{~s}^{-1}$
3 $5.1 \mathrm{~km} \mathrm{~s}^{-1}$
4 $10.2 \mathrm{~km} \mathrm{~s}^{-1}$
Gravitation

138758 The escape velocity form the surface of earth is $11.2 \mathrm{~km} \mathrm{~s}^{-1}$. What is the escape velocity in a planet whose radius is three times that of earth and on which the acceleration due to gravity is three times of that on earth?

1 $11.2 \mathrm{~km} \mathrm{~s}^{-1}$
2 $22.4 \mathrm{~km} \mathrm{~s}^{-1}$
3 $33.6 \mathrm{~km} \mathrm{~s}^{-1}$
4 $5.6 \mathrm{~km} \mathrm{~s}^{-1}$
Gravitation

138760 The escape velocity of a particle from the surface of the earth is given by

1 $(\mathrm{gR})^{1 / 2}$
2 $(2 \mathrm{gR})^{1 / 2}$
3 $(3 \mathrm{gR})^{1 / 2}$
4 $\left(\frac{\mathrm{gR}}{2}\right)^{2}$