04. Escape Velocity, Orbital Velocity, Satellites Motion, Binding Energy
Gravitation

138724 The velocity with which a projectile must be fired so that it escapes earth's gravitation does not depend on:

1 mass of the earth
2 mass of the projectile
3 radius of the projectile's orbit
4 gravitational constant
Gravitation

138725 The escape velocity from the earth is $\mathbf{1 1 . 2}$ $\mathrm{km} / \mathrm{sec}$. The escape velocity from a planet having twice the radius and the same mean density as the earth, is:

1 $11.2 \mathrm{~km} / \mathrm{sec}$
2 $22.4 \mathrm{~km} / \mathrm{sec}$
3 $15.00 \mathrm{~km} / \mathrm{sec}$
4 $5.8 \mathrm{~km} / \mathrm{sec}$
Gravitation

138726 If $v_{0}$ be the orbital velocity of a satellite in a circular orbit close to the earth's surface and $v_{e}$ is the escape velocity from the earth, then relation between the two is

1 $\mathrm{v}_{\mathrm{e}}=2 \mathrm{v}_{\mathrm{o}}$
2 $\mathrm{v}_{\mathrm{e}}=\sqrt{3} \mathrm{v}_{\mathrm{o}}$
3 $\mathrm{v}_{\mathrm{e}}=\mathrm{v}_{\mathrm{o}} \sqrt{2}$
4 $v_{\mathrm{o}}=\mathrm{v}_{\mathrm{e}}$
Gravitation

138728 Knowing that the mass of the moon is $1 / 81$ times that of earth and its radius is $1 / 4$ the radius of earth. If the escape velocity at the surface of the earth is $11.2 \mathrm{~km} / \mathrm{sec}$, then the value of escape velocity at the surface of the moon is

1 $2.5 \mathrm{~km} / \mathrm{sec}$
2 $0.14 \mathrm{~km} / \mathrm{sec}$
3 $5 \mathrm{~km} / \mathrm{sec}$
4 $8 \mathrm{~km} / \mathrm{sec}$
Gravitation

138724 The velocity with which a projectile must be fired so that it escapes earth's gravitation does not depend on:

1 mass of the earth
2 mass of the projectile
3 radius of the projectile's orbit
4 gravitational constant
Gravitation

138725 The escape velocity from the earth is $\mathbf{1 1 . 2}$ $\mathrm{km} / \mathrm{sec}$. The escape velocity from a planet having twice the radius and the same mean density as the earth, is:

1 $11.2 \mathrm{~km} / \mathrm{sec}$
2 $22.4 \mathrm{~km} / \mathrm{sec}$
3 $15.00 \mathrm{~km} / \mathrm{sec}$
4 $5.8 \mathrm{~km} / \mathrm{sec}$
Gravitation

138726 If $v_{0}$ be the orbital velocity of a satellite in a circular orbit close to the earth's surface and $v_{e}$ is the escape velocity from the earth, then relation between the two is

1 $\mathrm{v}_{\mathrm{e}}=2 \mathrm{v}_{\mathrm{o}}$
2 $\mathrm{v}_{\mathrm{e}}=\sqrt{3} \mathrm{v}_{\mathrm{o}}$
3 $\mathrm{v}_{\mathrm{e}}=\mathrm{v}_{\mathrm{o}} \sqrt{2}$
4 $v_{\mathrm{o}}=\mathrm{v}_{\mathrm{e}}$
Gravitation

138728 Knowing that the mass of the moon is $1 / 81$ times that of earth and its radius is $1 / 4$ the radius of earth. If the escape velocity at the surface of the earth is $11.2 \mathrm{~km} / \mathrm{sec}$, then the value of escape velocity at the surface of the moon is

1 $2.5 \mathrm{~km} / \mathrm{sec}$
2 $0.14 \mathrm{~km} / \mathrm{sec}$
3 $5 \mathrm{~km} / \mathrm{sec}$
4 $8 \mathrm{~km} / \mathrm{sec}$
Gravitation

138724 The velocity with which a projectile must be fired so that it escapes earth's gravitation does not depend on:

1 mass of the earth
2 mass of the projectile
3 radius of the projectile's orbit
4 gravitational constant
Gravitation

138725 The escape velocity from the earth is $\mathbf{1 1 . 2}$ $\mathrm{km} / \mathrm{sec}$. The escape velocity from a planet having twice the radius and the same mean density as the earth, is:

1 $11.2 \mathrm{~km} / \mathrm{sec}$
2 $22.4 \mathrm{~km} / \mathrm{sec}$
3 $15.00 \mathrm{~km} / \mathrm{sec}$
4 $5.8 \mathrm{~km} / \mathrm{sec}$
Gravitation

138726 If $v_{0}$ be the orbital velocity of a satellite in a circular orbit close to the earth's surface and $v_{e}$ is the escape velocity from the earth, then relation between the two is

1 $\mathrm{v}_{\mathrm{e}}=2 \mathrm{v}_{\mathrm{o}}$
2 $\mathrm{v}_{\mathrm{e}}=\sqrt{3} \mathrm{v}_{\mathrm{o}}$
3 $\mathrm{v}_{\mathrm{e}}=\mathrm{v}_{\mathrm{o}} \sqrt{2}$
4 $v_{\mathrm{o}}=\mathrm{v}_{\mathrm{e}}$
Gravitation

138728 Knowing that the mass of the moon is $1 / 81$ times that of earth and its radius is $1 / 4$ the radius of earth. If the escape velocity at the surface of the earth is $11.2 \mathrm{~km} / \mathrm{sec}$, then the value of escape velocity at the surface of the moon is

1 $2.5 \mathrm{~km} / \mathrm{sec}$
2 $0.14 \mathrm{~km} / \mathrm{sec}$
3 $5 \mathrm{~km} / \mathrm{sec}$
4 $8 \mathrm{~km} / \mathrm{sec}$
Gravitation

138724 The velocity with which a projectile must be fired so that it escapes earth's gravitation does not depend on:

1 mass of the earth
2 mass of the projectile
3 radius of the projectile's orbit
4 gravitational constant
Gravitation

138725 The escape velocity from the earth is $\mathbf{1 1 . 2}$ $\mathrm{km} / \mathrm{sec}$. The escape velocity from a planet having twice the radius and the same mean density as the earth, is:

1 $11.2 \mathrm{~km} / \mathrm{sec}$
2 $22.4 \mathrm{~km} / \mathrm{sec}$
3 $15.00 \mathrm{~km} / \mathrm{sec}$
4 $5.8 \mathrm{~km} / \mathrm{sec}$
Gravitation

138726 If $v_{0}$ be the orbital velocity of a satellite in a circular orbit close to the earth's surface and $v_{e}$ is the escape velocity from the earth, then relation between the two is

1 $\mathrm{v}_{\mathrm{e}}=2 \mathrm{v}_{\mathrm{o}}$
2 $\mathrm{v}_{\mathrm{e}}=\sqrt{3} \mathrm{v}_{\mathrm{o}}$
3 $\mathrm{v}_{\mathrm{e}}=\mathrm{v}_{\mathrm{o}} \sqrt{2}$
4 $v_{\mathrm{o}}=\mathrm{v}_{\mathrm{e}}$
Gravitation

138728 Knowing that the mass of the moon is $1 / 81$ times that of earth and its radius is $1 / 4$ the radius of earth. If the escape velocity at the surface of the earth is $11.2 \mathrm{~km} / \mathrm{sec}$, then the value of escape velocity at the surface of the moon is

1 $2.5 \mathrm{~km} / \mathrm{sec}$
2 $0.14 \mathrm{~km} / \mathrm{sec}$
3 $5 \mathrm{~km} / \mathrm{sec}$
4 $8 \mathrm{~km} / \mathrm{sec}$