03. Kepler's Law of Planetary Motion
Gravitation

138625 Kepler's second law states that the radius vector to a planet from the sun sweeps out equal areas in equal intervals of time. This law is a consequence of the conservation of:

1 Time
2 Mass
3 Angular momentum
4 Linear momentum
Gravitation

138626 The period $T$ and radius $R$ of a circular orbit of a planet about the sun are related by

1 $T^{2} \propto R^{3}$
2 $\mathrm{T} \propto \mathrm{R}$
3 $\mathrm{T}^{2} \propto \sqrt{\mathrm{R}^{3}}$
4 $\mathrm{T}^{2} \propto \mathrm{R}^{4}$
Gravitation

138627 The time period of a satellite of earth is 5 hours. If the separation between the earth and the satellite is increased to 4 times the previous value, the new time period will become.

1 10 hours
2 80 hours
3 40 hours
4 20 hours
Gravitation

138628 If a planet revolves around the sun in a circular orbit of radius "a" with a period of revolution $T$, then ( $K$ being a positive constant)

1 $\mathrm{T}=\mathrm{Ka}^{2 / 3}$
2 $\mathrm{T}=\mathrm{Ka}^{3 / 2}$
3 $\mathrm{T}=\mathrm{Ka}^{2}$
4 $\mathrm{T}=\mathrm{Ka}^{3}$
Gravitation

138625 Kepler's second law states that the radius vector to a planet from the sun sweeps out equal areas in equal intervals of time. This law is a consequence of the conservation of:

1 Time
2 Mass
3 Angular momentum
4 Linear momentum
Gravitation

138626 The period $T$ and radius $R$ of a circular orbit of a planet about the sun are related by

1 $T^{2} \propto R^{3}$
2 $\mathrm{T} \propto \mathrm{R}$
3 $\mathrm{T}^{2} \propto \sqrt{\mathrm{R}^{3}}$
4 $\mathrm{T}^{2} \propto \mathrm{R}^{4}$
Gravitation

138627 The time period of a satellite of earth is 5 hours. If the separation between the earth and the satellite is increased to 4 times the previous value, the new time period will become.

1 10 hours
2 80 hours
3 40 hours
4 20 hours
Gravitation

138628 If a planet revolves around the sun in a circular orbit of radius "a" with a period of revolution $T$, then ( $K$ being a positive constant)

1 $\mathrm{T}=\mathrm{Ka}^{2 / 3}$
2 $\mathrm{T}=\mathrm{Ka}^{3 / 2}$
3 $\mathrm{T}=\mathrm{Ka}^{2}$
4 $\mathrm{T}=\mathrm{Ka}^{3}$
Gravitation

138625 Kepler's second law states that the radius vector to a planet from the sun sweeps out equal areas in equal intervals of time. This law is a consequence of the conservation of:

1 Time
2 Mass
3 Angular momentum
4 Linear momentum
Gravitation

138626 The period $T$ and radius $R$ of a circular orbit of a planet about the sun are related by

1 $T^{2} \propto R^{3}$
2 $\mathrm{T} \propto \mathrm{R}$
3 $\mathrm{T}^{2} \propto \sqrt{\mathrm{R}^{3}}$
4 $\mathrm{T}^{2} \propto \mathrm{R}^{4}$
Gravitation

138627 The time period of a satellite of earth is 5 hours. If the separation between the earth and the satellite is increased to 4 times the previous value, the new time period will become.

1 10 hours
2 80 hours
3 40 hours
4 20 hours
Gravitation

138628 If a planet revolves around the sun in a circular orbit of radius "a" with a period of revolution $T$, then ( $K$ being a positive constant)

1 $\mathrm{T}=\mathrm{Ka}^{2 / 3}$
2 $\mathrm{T}=\mathrm{Ka}^{3 / 2}$
3 $\mathrm{T}=\mathrm{Ka}^{2}$
4 $\mathrm{T}=\mathrm{Ka}^{3}$
Gravitation

138625 Kepler's second law states that the radius vector to a planet from the sun sweeps out equal areas in equal intervals of time. This law is a consequence of the conservation of:

1 Time
2 Mass
3 Angular momentum
4 Linear momentum
Gravitation

138626 The period $T$ and radius $R$ of a circular orbit of a planet about the sun are related by

1 $T^{2} \propto R^{3}$
2 $\mathrm{T} \propto \mathrm{R}$
3 $\mathrm{T}^{2} \propto \sqrt{\mathrm{R}^{3}}$
4 $\mathrm{T}^{2} \propto \mathrm{R}^{4}$
Gravitation

138627 The time period of a satellite of earth is 5 hours. If the separation between the earth and the satellite is increased to 4 times the previous value, the new time period will become.

1 10 hours
2 80 hours
3 40 hours
4 20 hours
Gravitation

138628 If a planet revolves around the sun in a circular orbit of radius "a" with a period of revolution $T$, then ( $K$ being a positive constant)

1 $\mathrm{T}=\mathrm{Ka}^{2 / 3}$
2 $\mathrm{T}=\mathrm{Ka}^{3 / 2}$
3 $\mathrm{T}=\mathrm{Ka}^{2}$
4 $\mathrm{T}=\mathrm{Ka}^{3}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here