03. Kepler's Law of Planetary Motion
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Gravitation

138616 A satellite of mass ' $m$ ' is revolving around the earth of mass ' $M$ ' in an orbit of radius ' $r$ ' with constant angular velocity ' $\omega$ '. The angular momentum of the satellite is
( $G$ = gravitational constant)

1 $\left(\frac{\mathrm{GMr}}{\mathrm{m}}\right)^{2}$
2 $\mathrm{m}(\mathrm{GMr})^{\frac{1}{2}}$
3 $\mathrm{m}(\mathrm{GMr})$
4 $(\mathrm{GMmr})^{1 / 2}$
Gravitation

138617 Earth revolves round the sun in a circular orbit of radius ' $R$ '. The angular momentum of the revolving earth is directly proportional to

1 $\mathrm{R}$
2 $\sqrt{\mathrm{R}}$
3 $\mathrm{R}^{2}$
4 $\mathrm{R}^{3}$
Gravitation

138618 A geostationary satellite is orbiting the earth at a height $6 R$ above the surface of the earth, where $R$ is the radius of the earth. This time period of another satellite at a height $(2.5 \mathrm{R})$ from the surface of the earth is

1 10 hours
2 $6 \sqrt{2}$ hours
3 $6 \sqrt{3}$ hours
4 6 hours
Gravitation

138619 The time period of an earth satellite in circular orbit is independent of

1 radius of the orbit.
2 neither the mass of the satellite nor the radius of the orbit.
3 the mass of the satellite.
4 both the mass of satellite and radius of the orbit.
Gravitation

138616 A satellite of mass ' $m$ ' is revolving around the earth of mass ' $M$ ' in an orbit of radius ' $r$ ' with constant angular velocity ' $\omega$ '. The angular momentum of the satellite is
( $G$ = gravitational constant)

1 $\left(\frac{\mathrm{GMr}}{\mathrm{m}}\right)^{2}$
2 $\mathrm{m}(\mathrm{GMr})^{\frac{1}{2}}$
3 $\mathrm{m}(\mathrm{GMr})$
4 $(\mathrm{GMmr})^{1 / 2}$
Gravitation

138617 Earth revolves round the sun in a circular orbit of radius ' $R$ '. The angular momentum of the revolving earth is directly proportional to

1 $\mathrm{R}$
2 $\sqrt{\mathrm{R}}$
3 $\mathrm{R}^{2}$
4 $\mathrm{R}^{3}$
Gravitation

138618 A geostationary satellite is orbiting the earth at a height $6 R$ above the surface of the earth, where $R$ is the radius of the earth. This time period of another satellite at a height $(2.5 \mathrm{R})$ from the surface of the earth is

1 10 hours
2 $6 \sqrt{2}$ hours
3 $6 \sqrt{3}$ hours
4 6 hours
Gravitation

138619 The time period of an earth satellite in circular orbit is independent of

1 radius of the orbit.
2 neither the mass of the satellite nor the radius of the orbit.
3 the mass of the satellite.
4 both the mass of satellite and radius of the orbit.
Gravitation

138616 A satellite of mass ' $m$ ' is revolving around the earth of mass ' $M$ ' in an orbit of radius ' $r$ ' with constant angular velocity ' $\omega$ '. The angular momentum of the satellite is
( $G$ = gravitational constant)

1 $\left(\frac{\mathrm{GMr}}{\mathrm{m}}\right)^{2}$
2 $\mathrm{m}(\mathrm{GMr})^{\frac{1}{2}}$
3 $\mathrm{m}(\mathrm{GMr})$
4 $(\mathrm{GMmr})^{1 / 2}$
Gravitation

138617 Earth revolves round the sun in a circular orbit of radius ' $R$ '. The angular momentum of the revolving earth is directly proportional to

1 $\mathrm{R}$
2 $\sqrt{\mathrm{R}}$
3 $\mathrm{R}^{2}$
4 $\mathrm{R}^{3}$
Gravitation

138618 A geostationary satellite is orbiting the earth at a height $6 R$ above the surface of the earth, where $R$ is the radius of the earth. This time period of another satellite at a height $(2.5 \mathrm{R})$ from the surface of the earth is

1 10 hours
2 $6 \sqrt{2}$ hours
3 $6 \sqrt{3}$ hours
4 6 hours
Gravitation

138619 The time period of an earth satellite in circular orbit is independent of

1 radius of the orbit.
2 neither the mass of the satellite nor the radius of the orbit.
3 the mass of the satellite.
4 both the mass of satellite and radius of the orbit.
Gravitation

138616 A satellite of mass ' $m$ ' is revolving around the earth of mass ' $M$ ' in an orbit of radius ' $r$ ' with constant angular velocity ' $\omega$ '. The angular momentum of the satellite is
( $G$ = gravitational constant)

1 $\left(\frac{\mathrm{GMr}}{\mathrm{m}}\right)^{2}$
2 $\mathrm{m}(\mathrm{GMr})^{\frac{1}{2}}$
3 $\mathrm{m}(\mathrm{GMr})$
4 $(\mathrm{GMmr})^{1 / 2}$
Gravitation

138617 Earth revolves round the sun in a circular orbit of radius ' $R$ '. The angular momentum of the revolving earth is directly proportional to

1 $\mathrm{R}$
2 $\sqrt{\mathrm{R}}$
3 $\mathrm{R}^{2}$
4 $\mathrm{R}^{3}$
Gravitation

138618 A geostationary satellite is orbiting the earth at a height $6 R$ above the surface of the earth, where $R$ is the radius of the earth. This time period of another satellite at a height $(2.5 \mathrm{R})$ from the surface of the earth is

1 10 hours
2 $6 \sqrt{2}$ hours
3 $6 \sqrt{3}$ hours
4 6 hours
Gravitation

138619 The time period of an earth satellite in circular orbit is independent of

1 radius of the orbit.
2 neither the mass of the satellite nor the radius of the orbit.
3 the mass of the satellite.
4 both the mass of satellite and radius of the orbit.