03. Kepler's Law of Planetary Motion
Gravitation

138597 If the distance between the earth and the sun is half its present value, the number of days in a year would have been

1 730
2 182.5
3 129
4 64.5
Gravitation

138598 The rotation of the earth having radius $R$ about its axis speeds upto a value such that a man at latitude angle $60^{\circ}$ feels weightless. The duration of the day in such case will be:

1 $8 \pi \sqrt{\frac{R}{g}}$
2 $8 \pi \sqrt{\frac{g}{R}}$
3 $\pi \sqrt{\frac{R}{g}}$
4 $4 \pi \sqrt{\frac{\mathrm{g}}{\mathrm{R}}}$
Gravitation

138599 Suppose the gravitational force varies inversely as the nth power of distance. Then the time period of a planet in circular orbit of radius ' $R$ ' around the sun will be proportional to

1 $\mathrm{R}^{\mathrm{n}}$
2 $\mathrm{R}^{\left(\frac{\mathrm{n}-1}{2}\right)}$
3 $\mathrm{R}^{\left(\frac{\mathrm{n}+1}{2}\right)}$
4 $\mathrm{R}^{\left(\frac{\mathrm{n}-2}{2}\right)}$
Gravitation

138601 A system of binary stars of masses $m_{A}$ and $m_{B}$ are moving in circular orbits of radii $r_{A}$ and $r_{B}$ respectively. If $T_{A}$ and $T_{B}$ are the time periods of masses $m_{A}$ and $m_{B}$ respectively, then

1 $\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}=\left(\frac{\mathrm{r}_{\mathrm{A}}}{\mathrm{r}_{\mathrm{B}}}\right)^{3 / 2}$
2 $\mathrm{T}_{\mathrm{A}}>\mathrm{T}_{\mathrm{B}}\left(\right.$ if $\left.\mathrm{r}_{\mathrm{A}}>\mathrm{r}_{\mathrm{B}}\right)$
3 $\mathrm{T}_{\mathrm{A}}>\mathrm{T}_{\mathrm{B}}\left(\right.$ if $\left.\mathrm{m}_{\mathrm{A}}>\mathrm{m}_{\mathrm{B}}\right)$
4 $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}}$
Gravitation

138597 If the distance between the earth and the sun is half its present value, the number of days in a year would have been

1 730
2 182.5
3 129
4 64.5
Gravitation

138598 The rotation of the earth having radius $R$ about its axis speeds upto a value such that a man at latitude angle $60^{\circ}$ feels weightless. The duration of the day in such case will be:

1 $8 \pi \sqrt{\frac{R}{g}}$
2 $8 \pi \sqrt{\frac{g}{R}}$
3 $\pi \sqrt{\frac{R}{g}}$
4 $4 \pi \sqrt{\frac{\mathrm{g}}{\mathrm{R}}}$
Gravitation

138599 Suppose the gravitational force varies inversely as the nth power of distance. Then the time period of a planet in circular orbit of radius ' $R$ ' around the sun will be proportional to

1 $\mathrm{R}^{\mathrm{n}}$
2 $\mathrm{R}^{\left(\frac{\mathrm{n}-1}{2}\right)}$
3 $\mathrm{R}^{\left(\frac{\mathrm{n}+1}{2}\right)}$
4 $\mathrm{R}^{\left(\frac{\mathrm{n}-2}{2}\right)}$
Gravitation

138601 A system of binary stars of masses $m_{A}$ and $m_{B}$ are moving in circular orbits of radii $r_{A}$ and $r_{B}$ respectively. If $T_{A}$ and $T_{B}$ are the time periods of masses $m_{A}$ and $m_{B}$ respectively, then

1 $\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}=\left(\frac{\mathrm{r}_{\mathrm{A}}}{\mathrm{r}_{\mathrm{B}}}\right)^{3 / 2}$
2 $\mathrm{T}_{\mathrm{A}}>\mathrm{T}_{\mathrm{B}}\left(\right.$ if $\left.\mathrm{r}_{\mathrm{A}}>\mathrm{r}_{\mathrm{B}}\right)$
3 $\mathrm{T}_{\mathrm{A}}>\mathrm{T}_{\mathrm{B}}\left(\right.$ if $\left.\mathrm{m}_{\mathrm{A}}>\mathrm{m}_{\mathrm{B}}\right)$
4 $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}}$
Gravitation

138597 If the distance between the earth and the sun is half its present value, the number of days in a year would have been

1 730
2 182.5
3 129
4 64.5
Gravitation

138598 The rotation of the earth having radius $R$ about its axis speeds upto a value such that a man at latitude angle $60^{\circ}$ feels weightless. The duration of the day in such case will be:

1 $8 \pi \sqrt{\frac{R}{g}}$
2 $8 \pi \sqrt{\frac{g}{R}}$
3 $\pi \sqrt{\frac{R}{g}}$
4 $4 \pi \sqrt{\frac{\mathrm{g}}{\mathrm{R}}}$
Gravitation

138599 Suppose the gravitational force varies inversely as the nth power of distance. Then the time period of a planet in circular orbit of radius ' $R$ ' around the sun will be proportional to

1 $\mathrm{R}^{\mathrm{n}}$
2 $\mathrm{R}^{\left(\frac{\mathrm{n}-1}{2}\right)}$
3 $\mathrm{R}^{\left(\frac{\mathrm{n}+1}{2}\right)}$
4 $\mathrm{R}^{\left(\frac{\mathrm{n}-2}{2}\right)}$
Gravitation

138601 A system of binary stars of masses $m_{A}$ and $m_{B}$ are moving in circular orbits of radii $r_{A}$ and $r_{B}$ respectively. If $T_{A}$ and $T_{B}$ are the time periods of masses $m_{A}$ and $m_{B}$ respectively, then

1 $\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}=\left(\frac{\mathrm{r}_{\mathrm{A}}}{\mathrm{r}_{\mathrm{B}}}\right)^{3 / 2}$
2 $\mathrm{T}_{\mathrm{A}}>\mathrm{T}_{\mathrm{B}}\left(\right.$ if $\left.\mathrm{r}_{\mathrm{A}}>\mathrm{r}_{\mathrm{B}}\right)$
3 $\mathrm{T}_{\mathrm{A}}>\mathrm{T}_{\mathrm{B}}\left(\right.$ if $\left.\mathrm{m}_{\mathrm{A}}>\mathrm{m}_{\mathrm{B}}\right)$
4 $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}}$
Gravitation

138597 If the distance between the earth and the sun is half its present value, the number of days in a year would have been

1 730
2 182.5
3 129
4 64.5
Gravitation

138598 The rotation of the earth having radius $R$ about its axis speeds upto a value such that a man at latitude angle $60^{\circ}$ feels weightless. The duration of the day in such case will be:

1 $8 \pi \sqrt{\frac{R}{g}}$
2 $8 \pi \sqrt{\frac{g}{R}}$
3 $\pi \sqrt{\frac{R}{g}}$
4 $4 \pi \sqrt{\frac{\mathrm{g}}{\mathrm{R}}}$
Gravitation

138599 Suppose the gravitational force varies inversely as the nth power of distance. Then the time period of a planet in circular orbit of radius ' $R$ ' around the sun will be proportional to

1 $\mathrm{R}^{\mathrm{n}}$
2 $\mathrm{R}^{\left(\frac{\mathrm{n}-1}{2}\right)}$
3 $\mathrm{R}^{\left(\frac{\mathrm{n}+1}{2}\right)}$
4 $\mathrm{R}^{\left(\frac{\mathrm{n}-2}{2}\right)}$
Gravitation

138601 A system of binary stars of masses $m_{A}$ and $m_{B}$ are moving in circular orbits of radii $r_{A}$ and $r_{B}$ respectively. If $T_{A}$ and $T_{B}$ are the time periods of masses $m_{A}$ and $m_{B}$ respectively, then

1 $\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}=\left(\frac{\mathrm{r}_{\mathrm{A}}}{\mathrm{r}_{\mathrm{B}}}\right)^{3 / 2}$
2 $\mathrm{T}_{\mathrm{A}}>\mathrm{T}_{\mathrm{B}}\left(\right.$ if $\left.\mathrm{r}_{\mathrm{A}}>\mathrm{r}_{\mathrm{B}}\right)$
3 $\mathrm{T}_{\mathrm{A}}>\mathrm{T}_{\mathrm{B}}\left(\right.$ if $\left.\mathrm{m}_{\mathrm{A}}>\mathrm{m}_{\mathrm{B}}\right)$
4 $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}}$