02. Gravitational Potential Energy, Gravitational Potential
Gravitation

138483 The gravitational field due to a mass distribution is $E=\frac{k}{x^{3}}$ in the $x$-direction, where $k$ is a constant. The value of gravitational potential at a distance $x$ is-
[Taking gravitational potential to be zero at infinity]

1 $\frac{\mathrm{k}}{\mathrm{x}}$
2 $\frac{k}{x^{3}}$
3 $\frac{\mathrm{k}}{2 \mathrm{x}^{2}}$
4 $\frac{\mathrm{k}}{3 \mathrm{x}^{3}}$
Gravitation

138484 The gravitational potential at a place varies inversely with $x^{2}\left(\right.$ i.e. $\left.V=k / x^{2}\right)$, the gravitational field at that place is

1 $2 \mathrm{k} / \mathrm{x}^{3}$
2 $-2 \mathrm{k} / \mathrm{x}^{3}$
3 $\mathrm{k} / \mathrm{x}$
4 $-\mathrm{k} / \mathrm{x}$
Gravitation

138485 A projectile is fired from the earth vertically with a velocity $\mathrm{kv}$ where $\mathrm{v}$ is the escape velocity and $k$ is constant. The maximum height to which it rises as measured from the centre of earth of radius $R$ is :
Where $\mathrm{k} \lt 1$.

1 $\frac{\mathrm{R}}{\mathrm{k}^{2}}$
2 $\frac{\mathrm{R}}{1+\mathrm{k}^{2}}$
3 $\frac{\mathrm{R}}{1-\mathrm{k}^{2}}$
4 $\frac{\mathrm{kR}}{1+\mathrm{k}^{2}}$
Gravitation

138486 A mass $m$ on the surface of the Earth is shifted to a target equal to the radius of the Earth. If $R$ is the radius and $M$ is the mass of the Earth, then work done in this process is :

1 $\frac{\mathrm{mgR}}{2}$
2 $\mathrm{mgR}$
3 $2 \mathrm{mgR}$
4 $\frac{\operatorname{mgR}}{4}$
Gravitation

138483 The gravitational field due to a mass distribution is $E=\frac{k}{x^{3}}$ in the $x$-direction, where $k$ is a constant. The value of gravitational potential at a distance $x$ is-
[Taking gravitational potential to be zero at infinity]

1 $\frac{\mathrm{k}}{\mathrm{x}}$
2 $\frac{k}{x^{3}}$
3 $\frac{\mathrm{k}}{2 \mathrm{x}^{2}}$
4 $\frac{\mathrm{k}}{3 \mathrm{x}^{3}}$
Gravitation

138484 The gravitational potential at a place varies inversely with $x^{2}\left(\right.$ i.e. $\left.V=k / x^{2}\right)$, the gravitational field at that place is

1 $2 \mathrm{k} / \mathrm{x}^{3}$
2 $-2 \mathrm{k} / \mathrm{x}^{3}$
3 $\mathrm{k} / \mathrm{x}$
4 $-\mathrm{k} / \mathrm{x}$
Gravitation

138485 A projectile is fired from the earth vertically with a velocity $\mathrm{kv}$ where $\mathrm{v}$ is the escape velocity and $k$ is constant. The maximum height to which it rises as measured from the centre of earth of radius $R$ is :
Where $\mathrm{k} \lt 1$.

1 $\frac{\mathrm{R}}{\mathrm{k}^{2}}$
2 $\frac{\mathrm{R}}{1+\mathrm{k}^{2}}$
3 $\frac{\mathrm{R}}{1-\mathrm{k}^{2}}$
4 $\frac{\mathrm{kR}}{1+\mathrm{k}^{2}}$
Gravitation

138486 A mass $m$ on the surface of the Earth is shifted to a target equal to the radius of the Earth. If $R$ is the radius and $M$ is the mass of the Earth, then work done in this process is :

1 $\frac{\mathrm{mgR}}{2}$
2 $\mathrm{mgR}$
3 $2 \mathrm{mgR}$
4 $\frac{\operatorname{mgR}}{4}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Gravitation

138483 The gravitational field due to a mass distribution is $E=\frac{k}{x^{3}}$ in the $x$-direction, where $k$ is a constant. The value of gravitational potential at a distance $x$ is-
[Taking gravitational potential to be zero at infinity]

1 $\frac{\mathrm{k}}{\mathrm{x}}$
2 $\frac{k}{x^{3}}$
3 $\frac{\mathrm{k}}{2 \mathrm{x}^{2}}$
4 $\frac{\mathrm{k}}{3 \mathrm{x}^{3}}$
Gravitation

138484 The gravitational potential at a place varies inversely with $x^{2}\left(\right.$ i.e. $\left.V=k / x^{2}\right)$, the gravitational field at that place is

1 $2 \mathrm{k} / \mathrm{x}^{3}$
2 $-2 \mathrm{k} / \mathrm{x}^{3}$
3 $\mathrm{k} / \mathrm{x}$
4 $-\mathrm{k} / \mathrm{x}$
Gravitation

138485 A projectile is fired from the earth vertically with a velocity $\mathrm{kv}$ where $\mathrm{v}$ is the escape velocity and $k$ is constant. The maximum height to which it rises as measured from the centre of earth of radius $R$ is :
Where $\mathrm{k} \lt 1$.

1 $\frac{\mathrm{R}}{\mathrm{k}^{2}}$
2 $\frac{\mathrm{R}}{1+\mathrm{k}^{2}}$
3 $\frac{\mathrm{R}}{1-\mathrm{k}^{2}}$
4 $\frac{\mathrm{kR}}{1+\mathrm{k}^{2}}$
Gravitation

138486 A mass $m$ on the surface of the Earth is shifted to a target equal to the radius of the Earth. If $R$ is the radius and $M$ is the mass of the Earth, then work done in this process is :

1 $\frac{\mathrm{mgR}}{2}$
2 $\mathrm{mgR}$
3 $2 \mathrm{mgR}$
4 $\frac{\operatorname{mgR}}{4}$
Gravitation

138483 The gravitational field due to a mass distribution is $E=\frac{k}{x^{3}}$ in the $x$-direction, where $k$ is a constant. The value of gravitational potential at a distance $x$ is-
[Taking gravitational potential to be zero at infinity]

1 $\frac{\mathrm{k}}{\mathrm{x}}$
2 $\frac{k}{x^{3}}$
3 $\frac{\mathrm{k}}{2 \mathrm{x}^{2}}$
4 $\frac{\mathrm{k}}{3 \mathrm{x}^{3}}$
Gravitation

138484 The gravitational potential at a place varies inversely with $x^{2}\left(\right.$ i.e. $\left.V=k / x^{2}\right)$, the gravitational field at that place is

1 $2 \mathrm{k} / \mathrm{x}^{3}$
2 $-2 \mathrm{k} / \mathrm{x}^{3}$
3 $\mathrm{k} / \mathrm{x}$
4 $-\mathrm{k} / \mathrm{x}$
Gravitation

138485 A projectile is fired from the earth vertically with a velocity $\mathrm{kv}$ where $\mathrm{v}$ is the escape velocity and $k$ is constant. The maximum height to which it rises as measured from the centre of earth of radius $R$ is :
Where $\mathrm{k} \lt 1$.

1 $\frac{\mathrm{R}}{\mathrm{k}^{2}}$
2 $\frac{\mathrm{R}}{1+\mathrm{k}^{2}}$
3 $\frac{\mathrm{R}}{1-\mathrm{k}^{2}}$
4 $\frac{\mathrm{kR}}{1+\mathrm{k}^{2}}$
Gravitation

138486 A mass $m$ on the surface of the Earth is shifted to a target equal to the radius of the Earth. If $R$ is the radius and $M$ is the mass of the Earth, then work done in this process is :

1 $\frac{\mathrm{mgR}}{2}$
2 $\mathrm{mgR}$
3 $2 \mathrm{mgR}$
4 $\frac{\operatorname{mgR}}{4}$