02. Gravitational Potential Energy, Gravitational Potential
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Gravitation

138468 There is a shell of mass $M$ and density of the shell is uniform. The work done to take a point mass from point $A$ to $B$ is $[A B=r]$

1 $\frac{\mathrm{GmM}}{\mathrm{r}}$
2 $\frac{\mathrm{GmM}}{\mathrm{R}}$
3 $-\frac{\mathrm{GmM}}{\mathrm{r}}$
4 zero
Gravitation

138469 Two bodies of masses $\mathrm{m}$ and $4 \mathrm{~m}$ are placed at a distance $r$. The gravitational potential at a point on the line joining them, where the gravitational field is zero, is

1 zero
2 $-\frac{4 \mathrm{Gm}}{\mathrm{r}}$
3 $-\frac{6 \mathrm{Gm}}{\mathrm{r}}$
4 $-\frac{9 \mathrm{Gm}}{\mathrm{r}}$
Gravitation

138470 From a solid sphere of mass $M$ and radius $R$, a spherical portion of radius $R / 2$ is removed, as shown in figure. Taking gravitational potential $V=0$ at $r=\alpha$. The potential at the centre of the cavity thus formed is $(G=$ gravitational constant)

1 $\frac{-2 \mathrm{GM}}{3 \mathrm{R}}$
2 $\frac{-2 \mathrm{GM}}{\mathrm{R}}$
3 $\frac{-\mathrm{GM}}{2 \mathrm{R}}$
4 $\frac{-\mathrm{GM}}{\mathrm{R}}$
Gravitation

138472 If $g$ be the acceleration due to gravity at the earth surface, then what will be the increase in potential energy if object of mass $m$ is raised by its radius $R$ ?

1 $\frac{1}{2} \mathrm{mgR}$
2 $2 \mathrm{mgR}$
3 $\mathrm{mgR}$
4 $\frac{1}{4} \mathrm{mgR}$
Gravitation

138468 There is a shell of mass $M$ and density of the shell is uniform. The work done to take a point mass from point $A$ to $B$ is $[A B=r]$

1 $\frac{\mathrm{GmM}}{\mathrm{r}}$
2 $\frac{\mathrm{GmM}}{\mathrm{R}}$
3 $-\frac{\mathrm{GmM}}{\mathrm{r}}$
4 zero
Gravitation

138469 Two bodies of masses $\mathrm{m}$ and $4 \mathrm{~m}$ are placed at a distance $r$. The gravitational potential at a point on the line joining them, where the gravitational field is zero, is

1 zero
2 $-\frac{4 \mathrm{Gm}}{\mathrm{r}}$
3 $-\frac{6 \mathrm{Gm}}{\mathrm{r}}$
4 $-\frac{9 \mathrm{Gm}}{\mathrm{r}}$
Gravitation

138470 From a solid sphere of mass $M$ and radius $R$, a spherical portion of radius $R / 2$ is removed, as shown in figure. Taking gravitational potential $V=0$ at $r=\alpha$. The potential at the centre of the cavity thus formed is $(G=$ gravitational constant)

1 $\frac{-2 \mathrm{GM}}{3 \mathrm{R}}$
2 $\frac{-2 \mathrm{GM}}{\mathrm{R}}$
3 $\frac{-\mathrm{GM}}{2 \mathrm{R}}$
4 $\frac{-\mathrm{GM}}{\mathrm{R}}$
Gravitation

138472 If $g$ be the acceleration due to gravity at the earth surface, then what will be the increase in potential energy if object of mass $m$ is raised by its radius $R$ ?

1 $\frac{1}{2} \mathrm{mgR}$
2 $2 \mathrm{mgR}$
3 $\mathrm{mgR}$
4 $\frac{1}{4} \mathrm{mgR}$
Gravitation

138468 There is a shell of mass $M$ and density of the shell is uniform. The work done to take a point mass from point $A$ to $B$ is $[A B=r]$

1 $\frac{\mathrm{GmM}}{\mathrm{r}}$
2 $\frac{\mathrm{GmM}}{\mathrm{R}}$
3 $-\frac{\mathrm{GmM}}{\mathrm{r}}$
4 zero
Gravitation

138469 Two bodies of masses $\mathrm{m}$ and $4 \mathrm{~m}$ are placed at a distance $r$. The gravitational potential at a point on the line joining them, where the gravitational field is zero, is

1 zero
2 $-\frac{4 \mathrm{Gm}}{\mathrm{r}}$
3 $-\frac{6 \mathrm{Gm}}{\mathrm{r}}$
4 $-\frac{9 \mathrm{Gm}}{\mathrm{r}}$
Gravitation

138470 From a solid sphere of mass $M$ and radius $R$, a spherical portion of radius $R / 2$ is removed, as shown in figure. Taking gravitational potential $V=0$ at $r=\alpha$. The potential at the centre of the cavity thus formed is $(G=$ gravitational constant)

1 $\frac{-2 \mathrm{GM}}{3 \mathrm{R}}$
2 $\frac{-2 \mathrm{GM}}{\mathrm{R}}$
3 $\frac{-\mathrm{GM}}{2 \mathrm{R}}$
4 $\frac{-\mathrm{GM}}{\mathrm{R}}$
Gravitation

138472 If $g$ be the acceleration due to gravity at the earth surface, then what will be the increase in potential energy if object of mass $m$ is raised by its radius $R$ ?

1 $\frac{1}{2} \mathrm{mgR}$
2 $2 \mathrm{mgR}$
3 $\mathrm{mgR}$
4 $\frac{1}{4} \mathrm{mgR}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Gravitation

138468 There is a shell of mass $M$ and density of the shell is uniform. The work done to take a point mass from point $A$ to $B$ is $[A B=r]$

1 $\frac{\mathrm{GmM}}{\mathrm{r}}$
2 $\frac{\mathrm{GmM}}{\mathrm{R}}$
3 $-\frac{\mathrm{GmM}}{\mathrm{r}}$
4 zero
Gravitation

138469 Two bodies of masses $\mathrm{m}$ and $4 \mathrm{~m}$ are placed at a distance $r$. The gravitational potential at a point on the line joining them, where the gravitational field is zero, is

1 zero
2 $-\frac{4 \mathrm{Gm}}{\mathrm{r}}$
3 $-\frac{6 \mathrm{Gm}}{\mathrm{r}}$
4 $-\frac{9 \mathrm{Gm}}{\mathrm{r}}$
Gravitation

138470 From a solid sphere of mass $M$ and radius $R$, a spherical portion of radius $R / 2$ is removed, as shown in figure. Taking gravitational potential $V=0$ at $r=\alpha$. The potential at the centre of the cavity thus formed is $(G=$ gravitational constant)

1 $\frac{-2 \mathrm{GM}}{3 \mathrm{R}}$
2 $\frac{-2 \mathrm{GM}}{\mathrm{R}}$
3 $\frac{-\mathrm{GM}}{2 \mathrm{R}}$
4 $\frac{-\mathrm{GM}}{\mathrm{R}}$
Gravitation

138472 If $g$ be the acceleration due to gravity at the earth surface, then what will be the increase in potential energy if object of mass $m$ is raised by its radius $R$ ?

1 $\frac{1}{2} \mathrm{mgR}$
2 $2 \mathrm{mgR}$
3 $\mathrm{mgR}$
4 $\frac{1}{4} \mathrm{mgR}$