01. Acceleration due to Gravity
Gravitation

138376 What will be the acceleration due to gravity at a depth $\mathrm{d}$, where $\mathrm{g}$ is acceleration due to gravity on the surface of earth ?

1 $\frac{\mathrm{g}}{\left[1+\frac{\mathrm{d}}{\mathrm{R}}\right]^{2}}$
2 $\mathrm{g}\left[1-\frac{2 \mathrm{~d}}{\mathrm{R}}\right]$
3 $\frac{\mathrm{g}}{\left[1-\frac{\mathrm{d}}{\mathrm{R}}\right]^{2}}$
4 $g\left[1-\frac{d}{R}\right]$
Gravitation

138377 The period of oscillation of a simple pendulum of constant length at surface of the earth is $T$ its time period inside a mine will be

1 cannot be compared
2 equal to $\mathrm{T}$
3 less than $\mathrm{T}$
4 more than $\mathrm{T}$
Gravitation

138378 The value of acceleration due to gravity $g$ at distance $r$ from earth's centre such that $r \lt R$ depend on $r$ according to relation: $(R=$ radius of earth)

1 $g \propto \frac{1}{\mathrm{r}^{2}}$
2 $g \propto \frac{1}{\mathrm{r}}$
3 $g \propto r$
4 $g \propto r^{2}$
[UP CMPT-2002]
Gravitation

138379 At what depth below the surface of earth, the acceleration due to gravity $g$ will be half of its value $1600 \mathrm{~km}$ above the surface of earth? (Radius of earth $=6400 \mathrm{~km}$ )

1 $1600 \mathrm{~km}$
2 $2400 \mathrm{~km}$
3 $3200 \mathrm{~km}$
4 $4352 \mathrm{~km}$
Gravitation

138381 The mass and diameter of a planet have twice the value of the corresponding parameters of earth. Acceleration due to gravity on the surface of the planet is

1 $9.8 \mathrm{~m} / \mathrm{s}$
2 $19.6 \mathrm{~m} / \mathrm{s}$
3 $980 \mathrm{~m} / \mathrm{s}$
4 $4.9 \mathrm{~m} / \mathrm{s}$
Gravitation

138376 What will be the acceleration due to gravity at a depth $\mathrm{d}$, where $\mathrm{g}$ is acceleration due to gravity on the surface of earth ?

1 $\frac{\mathrm{g}}{\left[1+\frac{\mathrm{d}}{\mathrm{R}}\right]^{2}}$
2 $\mathrm{g}\left[1-\frac{2 \mathrm{~d}}{\mathrm{R}}\right]$
3 $\frac{\mathrm{g}}{\left[1-\frac{\mathrm{d}}{\mathrm{R}}\right]^{2}}$
4 $g\left[1-\frac{d}{R}\right]$
Gravitation

138377 The period of oscillation of a simple pendulum of constant length at surface of the earth is $T$ its time period inside a mine will be

1 cannot be compared
2 equal to $\mathrm{T}$
3 less than $\mathrm{T}$
4 more than $\mathrm{T}$
Gravitation

138378 The value of acceleration due to gravity $g$ at distance $r$ from earth's centre such that $r \lt R$ depend on $r$ according to relation: $(R=$ radius of earth)

1 $g \propto \frac{1}{\mathrm{r}^{2}}$
2 $g \propto \frac{1}{\mathrm{r}}$
3 $g \propto r$
4 $g \propto r^{2}$
[UP CMPT-2002]
Gravitation

138379 At what depth below the surface of earth, the acceleration due to gravity $g$ will be half of its value $1600 \mathrm{~km}$ above the surface of earth? (Radius of earth $=6400 \mathrm{~km}$ )

1 $1600 \mathrm{~km}$
2 $2400 \mathrm{~km}$
3 $3200 \mathrm{~km}$
4 $4352 \mathrm{~km}$
Gravitation

138381 The mass and diameter of a planet have twice the value of the corresponding parameters of earth. Acceleration due to gravity on the surface of the planet is

1 $9.8 \mathrm{~m} / \mathrm{s}$
2 $19.6 \mathrm{~m} / \mathrm{s}$
3 $980 \mathrm{~m} / \mathrm{s}$
4 $4.9 \mathrm{~m} / \mathrm{s}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Gravitation

138376 What will be the acceleration due to gravity at a depth $\mathrm{d}$, where $\mathrm{g}$ is acceleration due to gravity on the surface of earth ?

1 $\frac{\mathrm{g}}{\left[1+\frac{\mathrm{d}}{\mathrm{R}}\right]^{2}}$
2 $\mathrm{g}\left[1-\frac{2 \mathrm{~d}}{\mathrm{R}}\right]$
3 $\frac{\mathrm{g}}{\left[1-\frac{\mathrm{d}}{\mathrm{R}}\right]^{2}}$
4 $g\left[1-\frac{d}{R}\right]$
Gravitation

138377 The period of oscillation of a simple pendulum of constant length at surface of the earth is $T$ its time period inside a mine will be

1 cannot be compared
2 equal to $\mathrm{T}$
3 less than $\mathrm{T}$
4 more than $\mathrm{T}$
Gravitation

138378 The value of acceleration due to gravity $g$ at distance $r$ from earth's centre such that $r \lt R$ depend on $r$ according to relation: $(R=$ radius of earth)

1 $g \propto \frac{1}{\mathrm{r}^{2}}$
2 $g \propto \frac{1}{\mathrm{r}}$
3 $g \propto r$
4 $g \propto r^{2}$
[UP CMPT-2002]
Gravitation

138379 At what depth below the surface of earth, the acceleration due to gravity $g$ will be half of its value $1600 \mathrm{~km}$ above the surface of earth? (Radius of earth $=6400 \mathrm{~km}$ )

1 $1600 \mathrm{~km}$
2 $2400 \mathrm{~km}$
3 $3200 \mathrm{~km}$
4 $4352 \mathrm{~km}$
Gravitation

138381 The mass and diameter of a planet have twice the value of the corresponding parameters of earth. Acceleration due to gravity on the surface of the planet is

1 $9.8 \mathrm{~m} / \mathrm{s}$
2 $19.6 \mathrm{~m} / \mathrm{s}$
3 $980 \mathrm{~m} / \mathrm{s}$
4 $4.9 \mathrm{~m} / \mathrm{s}$
Gravitation

138376 What will be the acceleration due to gravity at a depth $\mathrm{d}$, where $\mathrm{g}$ is acceleration due to gravity on the surface of earth ?

1 $\frac{\mathrm{g}}{\left[1+\frac{\mathrm{d}}{\mathrm{R}}\right]^{2}}$
2 $\mathrm{g}\left[1-\frac{2 \mathrm{~d}}{\mathrm{R}}\right]$
3 $\frac{\mathrm{g}}{\left[1-\frac{\mathrm{d}}{\mathrm{R}}\right]^{2}}$
4 $g\left[1-\frac{d}{R}\right]$
Gravitation

138377 The period of oscillation of a simple pendulum of constant length at surface of the earth is $T$ its time period inside a mine will be

1 cannot be compared
2 equal to $\mathrm{T}$
3 less than $\mathrm{T}$
4 more than $\mathrm{T}$
Gravitation

138378 The value of acceleration due to gravity $g$ at distance $r$ from earth's centre such that $r \lt R$ depend on $r$ according to relation: $(R=$ radius of earth)

1 $g \propto \frac{1}{\mathrm{r}^{2}}$
2 $g \propto \frac{1}{\mathrm{r}}$
3 $g \propto r$
4 $g \propto r^{2}$
[UP CMPT-2002]
Gravitation

138379 At what depth below the surface of earth, the acceleration due to gravity $g$ will be half of its value $1600 \mathrm{~km}$ above the surface of earth? (Radius of earth $=6400 \mathrm{~km}$ )

1 $1600 \mathrm{~km}$
2 $2400 \mathrm{~km}$
3 $3200 \mathrm{~km}$
4 $4352 \mathrm{~km}$
Gravitation

138381 The mass and diameter of a planet have twice the value of the corresponding parameters of earth. Acceleration due to gravity on the surface of the planet is

1 $9.8 \mathrm{~m} / \mathrm{s}$
2 $19.6 \mathrm{~m} / \mathrm{s}$
3 $980 \mathrm{~m} / \mathrm{s}$
4 $4.9 \mathrm{~m} / \mathrm{s}$
Gravitation

138376 What will be the acceleration due to gravity at a depth $\mathrm{d}$, where $\mathrm{g}$ is acceleration due to gravity on the surface of earth ?

1 $\frac{\mathrm{g}}{\left[1+\frac{\mathrm{d}}{\mathrm{R}}\right]^{2}}$
2 $\mathrm{g}\left[1-\frac{2 \mathrm{~d}}{\mathrm{R}}\right]$
3 $\frac{\mathrm{g}}{\left[1-\frac{\mathrm{d}}{\mathrm{R}}\right]^{2}}$
4 $g\left[1-\frac{d}{R}\right]$
Gravitation

138377 The period of oscillation of a simple pendulum of constant length at surface of the earth is $T$ its time period inside a mine will be

1 cannot be compared
2 equal to $\mathrm{T}$
3 less than $\mathrm{T}$
4 more than $\mathrm{T}$
Gravitation

138378 The value of acceleration due to gravity $g$ at distance $r$ from earth's centre such that $r \lt R$ depend on $r$ according to relation: $(R=$ radius of earth)

1 $g \propto \frac{1}{\mathrm{r}^{2}}$
2 $g \propto \frac{1}{\mathrm{r}}$
3 $g \propto r$
4 $g \propto r^{2}$
[UP CMPT-2002]
Gravitation

138379 At what depth below the surface of earth, the acceleration due to gravity $g$ will be half of its value $1600 \mathrm{~km}$ above the surface of earth? (Radius of earth $=6400 \mathrm{~km}$ )

1 $1600 \mathrm{~km}$
2 $2400 \mathrm{~km}$
3 $3200 \mathrm{~km}$
4 $4352 \mathrm{~km}$
Gravitation

138381 The mass and diameter of a planet have twice the value of the corresponding parameters of earth. Acceleration due to gravity on the surface of the planet is

1 $9.8 \mathrm{~m} / \mathrm{s}$
2 $19.6 \mathrm{~m} / \mathrm{s}$
3 $980 \mathrm{~m} / \mathrm{s}$
4 $4.9 \mathrm{~m} / \mathrm{s}$