01. Acceleration due to Gravity
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Gravitation

138345 $\mathrm{g}_{\mathrm{e}}$ and $\mathrm{g}_{\mathrm{p}}$ denote the acceleration due to gravity on the surface of the earth and another planet whose mass and radius are twice to that of the earth, then:

1 $g_{p}=\frac{g_{e}}{2}$
2 $g_{p}=g_{e}$
3 $\mathrm{g}_{\mathrm{p}}=2 \mathrm{~g}_{\mathrm{e}}$
4 $g_{p}=\frac{g_{e}}{\sqrt{2}}$
Gravitation

138346 A body situated on earth's surface at its equator becomes weightless when the rotational kinetic energy of the earth reaches a critical value which is given by ( $M$ and $R$ be the mass and radius of earth respectively)

1 $\frac{\mathrm{MgR}}{2}$
2 $\frac{\mathrm{MgR}}{3}$
3 $\frac{\mathrm{MgR}}{4}$
4 $\frac{\mathrm{MgR}}{5}$
Gravitation

138347 At what height over the Earth's pole does the free fall acceleration decrease by $1 \%$ ? (Radius of the Earth $=6400 \mathrm{~km}$ )

1 $32 \mathrm{~km}$
2 $64 \mathrm{~km}$
3 $320 \mathrm{~km}$
4 $640 \mathrm{~km}$
Gravitation

138348 The value of acceleration due to gravity at a depth of $1600 \mathrm{~km}$ is equal to:

1 $4.8 \mathrm{~ms}^{-2}$
2 $9.8 \mathrm{~ms}^{-2}$
3 $7.35 \mathrm{~ms}^{-2}$
4 $19.6 \mathrm{~ms}^{-2}$
Gravitation

138345 $\mathrm{g}_{\mathrm{e}}$ and $\mathrm{g}_{\mathrm{p}}$ denote the acceleration due to gravity on the surface of the earth and another planet whose mass and radius are twice to that of the earth, then:

1 $g_{p}=\frac{g_{e}}{2}$
2 $g_{p}=g_{e}$
3 $\mathrm{g}_{\mathrm{p}}=2 \mathrm{~g}_{\mathrm{e}}$
4 $g_{p}=\frac{g_{e}}{\sqrt{2}}$
Gravitation

138346 A body situated on earth's surface at its equator becomes weightless when the rotational kinetic energy of the earth reaches a critical value which is given by ( $M$ and $R$ be the mass and radius of earth respectively)

1 $\frac{\mathrm{MgR}}{2}$
2 $\frac{\mathrm{MgR}}{3}$
3 $\frac{\mathrm{MgR}}{4}$
4 $\frac{\mathrm{MgR}}{5}$
Gravitation

138347 At what height over the Earth's pole does the free fall acceleration decrease by $1 \%$ ? (Radius of the Earth $=6400 \mathrm{~km}$ )

1 $32 \mathrm{~km}$
2 $64 \mathrm{~km}$
3 $320 \mathrm{~km}$
4 $640 \mathrm{~km}$
Gravitation

138348 The value of acceleration due to gravity at a depth of $1600 \mathrm{~km}$ is equal to:

1 $4.8 \mathrm{~ms}^{-2}$
2 $9.8 \mathrm{~ms}^{-2}$
3 $7.35 \mathrm{~ms}^{-2}$
4 $19.6 \mathrm{~ms}^{-2}$
Gravitation

138345 $\mathrm{g}_{\mathrm{e}}$ and $\mathrm{g}_{\mathrm{p}}$ denote the acceleration due to gravity on the surface of the earth and another planet whose mass and radius are twice to that of the earth, then:

1 $g_{p}=\frac{g_{e}}{2}$
2 $g_{p}=g_{e}$
3 $\mathrm{g}_{\mathrm{p}}=2 \mathrm{~g}_{\mathrm{e}}$
4 $g_{p}=\frac{g_{e}}{\sqrt{2}}$
Gravitation

138346 A body situated on earth's surface at its equator becomes weightless when the rotational kinetic energy of the earth reaches a critical value which is given by ( $M$ and $R$ be the mass and radius of earth respectively)

1 $\frac{\mathrm{MgR}}{2}$
2 $\frac{\mathrm{MgR}}{3}$
3 $\frac{\mathrm{MgR}}{4}$
4 $\frac{\mathrm{MgR}}{5}$
Gravitation

138347 At what height over the Earth's pole does the free fall acceleration decrease by $1 \%$ ? (Radius of the Earth $=6400 \mathrm{~km}$ )

1 $32 \mathrm{~km}$
2 $64 \mathrm{~km}$
3 $320 \mathrm{~km}$
4 $640 \mathrm{~km}$
Gravitation

138348 The value of acceleration due to gravity at a depth of $1600 \mathrm{~km}$ is equal to:

1 $4.8 \mathrm{~ms}^{-2}$
2 $9.8 \mathrm{~ms}^{-2}$
3 $7.35 \mathrm{~ms}^{-2}$
4 $19.6 \mathrm{~ms}^{-2}$
Gravitation

138345 $\mathrm{g}_{\mathrm{e}}$ and $\mathrm{g}_{\mathrm{p}}$ denote the acceleration due to gravity on the surface of the earth and another planet whose mass and radius are twice to that of the earth, then:

1 $g_{p}=\frac{g_{e}}{2}$
2 $g_{p}=g_{e}$
3 $\mathrm{g}_{\mathrm{p}}=2 \mathrm{~g}_{\mathrm{e}}$
4 $g_{p}=\frac{g_{e}}{\sqrt{2}}$
Gravitation

138346 A body situated on earth's surface at its equator becomes weightless when the rotational kinetic energy of the earth reaches a critical value which is given by ( $M$ and $R$ be the mass and radius of earth respectively)

1 $\frac{\mathrm{MgR}}{2}$
2 $\frac{\mathrm{MgR}}{3}$
3 $\frac{\mathrm{MgR}}{4}$
4 $\frac{\mathrm{MgR}}{5}$
Gravitation

138347 At what height over the Earth's pole does the free fall acceleration decrease by $1 \%$ ? (Radius of the Earth $=6400 \mathrm{~km}$ )

1 $32 \mathrm{~km}$
2 $64 \mathrm{~km}$
3 $320 \mathrm{~km}$
4 $640 \mathrm{~km}$
Gravitation

138348 The value of acceleration due to gravity at a depth of $1600 \mathrm{~km}$ is equal to:

1 $4.8 \mathrm{~ms}^{-2}$
2 $9.8 \mathrm{~ms}^{-2}$
3 $7.35 \mathrm{~ms}^{-2}$
4 $19.6 \mathrm{~ms}^{-2}$