01. Acceleration due to Gravity
Gravitation

138304 The ratio of acceleration due to gravity at a height $h$ above the surface of the earth and at a depth $h$ below the surface of the earth $h \lt R$, radius of earth

1 is constant
2 increases linearly with $h$
3 decreases linearly with $h$
4 decreases parabolically with $\mathrm{h}$
Gravitation

138307 The ratio $\frac{g}{g_{h}}$, where $g$ and $g_{h}$ are the accelerations due to gravity at the surface of the earth and at a height $h$ above the earth's surface respectively, is :

1 $\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)^{2}$
2 $\left(1+\frac{\mathrm{R}}{\mathrm{h}}\right)^{2}$
3 $\left(\frac{\mathrm{R}}{\mathrm{h}}\right)^{2}$
4 $\left(\frac{\mathrm{h}}{\mathrm{R}}\right)^{2}$
Gravitation

138309 If the density of a small planet is the same as that of earth, while the radius of the planet is 0.2 times that of the earth, the gravitational acceleration of the surface of that planet is :

1 $0.2 \mathrm{~g}$
2 $0.4 \mathrm{~g}$
3 $2 \mathrm{~g}$
4 $4 \mathrm{~g}$
Gravitation

138310 Acceleration due to gravity at a height $h$ is equal to that at a depth $d$ below the surface of the earth, if

1 $\mathrm{d}=\mathrm{h}$
2 $2 \mathrm{~d}=\mathrm{h}$
3 $\mathrm{d}=2 \mathrm{~h}$
4 $3 \mathrm{~d}=\mathrm{h}$
Gravitation

138311 Two bodies each of mass $m$ are hung from a balance whose scale pans differ in a vertical height by $h$. If the mean density of the earth is $\rho$, the error in weighing is

1 $\frac{4 \pi \rho \mathrm{Gmh}}{3}$
2 $\frac{3 \pi \rho \mathrm{Gmh}}{4}$
3 $\frac{8 \pi \rho \mathrm{Gmh}}{3}$
4 $\frac{3 \pi \rho \mathrm{Gmh}}{8}$
Gravitation

138304 The ratio of acceleration due to gravity at a height $h$ above the surface of the earth and at a depth $h$ below the surface of the earth $h \lt R$, radius of earth

1 is constant
2 increases linearly with $h$
3 decreases linearly with $h$
4 decreases parabolically with $\mathrm{h}$
Gravitation

138307 The ratio $\frac{g}{g_{h}}$, where $g$ and $g_{h}$ are the accelerations due to gravity at the surface of the earth and at a height $h$ above the earth's surface respectively, is :

1 $\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)^{2}$
2 $\left(1+\frac{\mathrm{R}}{\mathrm{h}}\right)^{2}$
3 $\left(\frac{\mathrm{R}}{\mathrm{h}}\right)^{2}$
4 $\left(\frac{\mathrm{h}}{\mathrm{R}}\right)^{2}$
Gravitation

138309 If the density of a small planet is the same as that of earth, while the radius of the planet is 0.2 times that of the earth, the gravitational acceleration of the surface of that planet is :

1 $0.2 \mathrm{~g}$
2 $0.4 \mathrm{~g}$
3 $2 \mathrm{~g}$
4 $4 \mathrm{~g}$
Gravitation

138310 Acceleration due to gravity at a height $h$ is equal to that at a depth $d$ below the surface of the earth, if

1 $\mathrm{d}=\mathrm{h}$
2 $2 \mathrm{~d}=\mathrm{h}$
3 $\mathrm{d}=2 \mathrm{~h}$
4 $3 \mathrm{~d}=\mathrm{h}$
Gravitation

138311 Two bodies each of mass $m$ are hung from a balance whose scale pans differ in a vertical height by $h$. If the mean density of the earth is $\rho$, the error in weighing is

1 $\frac{4 \pi \rho \mathrm{Gmh}}{3}$
2 $\frac{3 \pi \rho \mathrm{Gmh}}{4}$
3 $\frac{8 \pi \rho \mathrm{Gmh}}{3}$
4 $\frac{3 \pi \rho \mathrm{Gmh}}{8}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Gravitation

138304 The ratio of acceleration due to gravity at a height $h$ above the surface of the earth and at a depth $h$ below the surface of the earth $h \lt R$, radius of earth

1 is constant
2 increases linearly with $h$
3 decreases linearly with $h$
4 decreases parabolically with $\mathrm{h}$
Gravitation

138307 The ratio $\frac{g}{g_{h}}$, where $g$ and $g_{h}$ are the accelerations due to gravity at the surface of the earth and at a height $h$ above the earth's surface respectively, is :

1 $\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)^{2}$
2 $\left(1+\frac{\mathrm{R}}{\mathrm{h}}\right)^{2}$
3 $\left(\frac{\mathrm{R}}{\mathrm{h}}\right)^{2}$
4 $\left(\frac{\mathrm{h}}{\mathrm{R}}\right)^{2}$
Gravitation

138309 If the density of a small planet is the same as that of earth, while the radius of the planet is 0.2 times that of the earth, the gravitational acceleration of the surface of that planet is :

1 $0.2 \mathrm{~g}$
2 $0.4 \mathrm{~g}$
3 $2 \mathrm{~g}$
4 $4 \mathrm{~g}$
Gravitation

138310 Acceleration due to gravity at a height $h$ is equal to that at a depth $d$ below the surface of the earth, if

1 $\mathrm{d}=\mathrm{h}$
2 $2 \mathrm{~d}=\mathrm{h}$
3 $\mathrm{d}=2 \mathrm{~h}$
4 $3 \mathrm{~d}=\mathrm{h}$
Gravitation

138311 Two bodies each of mass $m$ are hung from a balance whose scale pans differ in a vertical height by $h$. If the mean density of the earth is $\rho$, the error in weighing is

1 $\frac{4 \pi \rho \mathrm{Gmh}}{3}$
2 $\frac{3 \pi \rho \mathrm{Gmh}}{4}$
3 $\frac{8 \pi \rho \mathrm{Gmh}}{3}$
4 $\frac{3 \pi \rho \mathrm{Gmh}}{8}$
Gravitation

138304 The ratio of acceleration due to gravity at a height $h$ above the surface of the earth and at a depth $h$ below the surface of the earth $h \lt R$, radius of earth

1 is constant
2 increases linearly with $h$
3 decreases linearly with $h$
4 decreases parabolically with $\mathrm{h}$
Gravitation

138307 The ratio $\frac{g}{g_{h}}$, where $g$ and $g_{h}$ are the accelerations due to gravity at the surface of the earth and at a height $h$ above the earth's surface respectively, is :

1 $\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)^{2}$
2 $\left(1+\frac{\mathrm{R}}{\mathrm{h}}\right)^{2}$
3 $\left(\frac{\mathrm{R}}{\mathrm{h}}\right)^{2}$
4 $\left(\frac{\mathrm{h}}{\mathrm{R}}\right)^{2}$
Gravitation

138309 If the density of a small planet is the same as that of earth, while the radius of the planet is 0.2 times that of the earth, the gravitational acceleration of the surface of that planet is :

1 $0.2 \mathrm{~g}$
2 $0.4 \mathrm{~g}$
3 $2 \mathrm{~g}$
4 $4 \mathrm{~g}$
Gravitation

138310 Acceleration due to gravity at a height $h$ is equal to that at a depth $d$ below the surface of the earth, if

1 $\mathrm{d}=\mathrm{h}$
2 $2 \mathrm{~d}=\mathrm{h}$
3 $\mathrm{d}=2 \mathrm{~h}$
4 $3 \mathrm{~d}=\mathrm{h}$
Gravitation

138311 Two bodies each of mass $m$ are hung from a balance whose scale pans differ in a vertical height by $h$. If the mean density of the earth is $\rho$, the error in weighing is

1 $\frac{4 \pi \rho \mathrm{Gmh}}{3}$
2 $\frac{3 \pi \rho \mathrm{Gmh}}{4}$
3 $\frac{8 \pi \rho \mathrm{Gmh}}{3}$
4 $\frac{3 \pi \rho \mathrm{Gmh}}{8}$
Gravitation

138304 The ratio of acceleration due to gravity at a height $h$ above the surface of the earth and at a depth $h$ below the surface of the earth $h \lt R$, radius of earth

1 is constant
2 increases linearly with $h$
3 decreases linearly with $h$
4 decreases parabolically with $\mathrm{h}$
Gravitation

138307 The ratio $\frac{g}{g_{h}}$, where $g$ and $g_{h}$ are the accelerations due to gravity at the surface of the earth and at a height $h$ above the earth's surface respectively, is :

1 $\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)^{2}$
2 $\left(1+\frac{\mathrm{R}}{\mathrm{h}}\right)^{2}$
3 $\left(\frac{\mathrm{R}}{\mathrm{h}}\right)^{2}$
4 $\left(\frac{\mathrm{h}}{\mathrm{R}}\right)^{2}$
Gravitation

138309 If the density of a small planet is the same as that of earth, while the radius of the planet is 0.2 times that of the earth, the gravitational acceleration of the surface of that planet is :

1 $0.2 \mathrm{~g}$
2 $0.4 \mathrm{~g}$
3 $2 \mathrm{~g}$
4 $4 \mathrm{~g}$
Gravitation

138310 Acceleration due to gravity at a height $h$ is equal to that at a depth $d$ below the surface of the earth, if

1 $\mathrm{d}=\mathrm{h}$
2 $2 \mathrm{~d}=\mathrm{h}$
3 $\mathrm{d}=2 \mathrm{~h}$
4 $3 \mathrm{~d}=\mathrm{h}$
Gravitation

138311 Two bodies each of mass $m$ are hung from a balance whose scale pans differ in a vertical height by $h$. If the mean density of the earth is $\rho$, the error in weighing is

1 $\frac{4 \pi \rho \mathrm{Gmh}}{3}$
2 $\frac{3 \pi \rho \mathrm{Gmh}}{4}$
3 $\frac{8 \pi \rho \mathrm{Gmh}}{3}$
4 $\frac{3 \pi \rho \mathrm{Gmh}}{8}$