00. Newton's Law of Gravitation
Gravitation

138229 Two identical solid copper spheres of radius $\mathbf{R}$ are placed in contact with each other. The gravitational attraction between them is proportional to:

1 $\mathrm{R}^{2}$
2 $\mathrm{R}^{-2}$
3 $\mathrm{R}^{4}$
4 $\mathrm{R}^{-4}$
5 $\mathrm{R}^{3}$
Gravitation

138230 The distance between the centre of moon and earth is $D$ and mass of earth is 81 times the mass of moon. At what distance from the centre of the earth, the gravitational force will be zero?

1 $\frac{\mathrm{D}}{2}$
2 $\frac{2 \mathrm{D}}{3}$
3 $\frac{4 \mathrm{D}}{3}$
4 $\frac{9 \mathrm{D}}{10}$
Gravitation

138231 Two masses $90 \mathrm{~kg}$ and $160 \mathrm{~kg}$ are separated by a distance of $5 \mathrm{~m}$. The magnitude of intensity of the gravitational field at a point which is at a distance $3 \mathrm{~m}$ from the $90 \mathrm{~kg}$ mass and $4 \mathrm{~m}$ from the $160 \mathrm{~kg}$ mass is (Universal gravitational constant, $G=6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} \mathbf{k g}^{-2}$ ).

1 $94.3 \times 10^{-10} \mathrm{~N} \mathrm{~kg}^{-1}$
2 $9.43 \times 10^{-10} \mathrm{~N} \mathrm{~kg}^{-1}$
3 $9.43 \times 10^{-12} \mathrm{~N} \mathrm{~kg}^{-1}$
4 $94.3 \times 10^{-12} \mathrm{~N} \mathrm{~kg}^{-1}$
Gravitation

138232 Two bodies of masses $m_{1}$ and $m_{2}$ initially at rest at infinite distance apart move towards each other under gravitational force of attraction. Their relative velocity of approach when they are separated by a distance $r$ is $(G=$ universal gravitational constant.)

1 $\left[\frac{2 \mathrm{G}\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right)}{\mathrm{r}}\right]^{1 / 2}$
2 $\left[\frac{2 \mathrm{G}\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)}{\mathrm{r}}\right]^{1 / 2}$
3 $\left[\frac{\mathrm{r}}{2 \mathrm{G}\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right)}\right]^{1 / 2}$
4 $\left[\frac{\mathrm{r}}{2 \mathrm{G}} \mathrm{m}_{1} \mathrm{~m}_{2}\right]^{1 / 2}$
Gravitation

138233 Two bodies of equal masses are some distance apart. If $20 \%$ of mass is transferred from the first body to the second body, then the gravitational force between them

1 Increases by $4 \%$
2 Increase by $14 \%$
3 Decreases by $4 \%$
4 Decreases by $14 \%$
Gravitation

138229 Two identical solid copper spheres of radius $\mathbf{R}$ are placed in contact with each other. The gravitational attraction between them is proportional to:

1 $\mathrm{R}^{2}$
2 $\mathrm{R}^{-2}$
3 $\mathrm{R}^{4}$
4 $\mathrm{R}^{-4}$
5 $\mathrm{R}^{3}$
Gravitation

138230 The distance between the centre of moon and earth is $D$ and mass of earth is 81 times the mass of moon. At what distance from the centre of the earth, the gravitational force will be zero?

1 $\frac{\mathrm{D}}{2}$
2 $\frac{2 \mathrm{D}}{3}$
3 $\frac{4 \mathrm{D}}{3}$
4 $\frac{9 \mathrm{D}}{10}$
Gravitation

138231 Two masses $90 \mathrm{~kg}$ and $160 \mathrm{~kg}$ are separated by a distance of $5 \mathrm{~m}$. The magnitude of intensity of the gravitational field at a point which is at a distance $3 \mathrm{~m}$ from the $90 \mathrm{~kg}$ mass and $4 \mathrm{~m}$ from the $160 \mathrm{~kg}$ mass is (Universal gravitational constant, $G=6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} \mathbf{k g}^{-2}$ ).

1 $94.3 \times 10^{-10} \mathrm{~N} \mathrm{~kg}^{-1}$
2 $9.43 \times 10^{-10} \mathrm{~N} \mathrm{~kg}^{-1}$
3 $9.43 \times 10^{-12} \mathrm{~N} \mathrm{~kg}^{-1}$
4 $94.3 \times 10^{-12} \mathrm{~N} \mathrm{~kg}^{-1}$
Gravitation

138232 Two bodies of masses $m_{1}$ and $m_{2}$ initially at rest at infinite distance apart move towards each other under gravitational force of attraction. Their relative velocity of approach when they are separated by a distance $r$ is $(G=$ universal gravitational constant.)

1 $\left[\frac{2 \mathrm{G}\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right)}{\mathrm{r}}\right]^{1 / 2}$
2 $\left[\frac{2 \mathrm{G}\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)}{\mathrm{r}}\right]^{1 / 2}$
3 $\left[\frac{\mathrm{r}}{2 \mathrm{G}\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right)}\right]^{1 / 2}$
4 $\left[\frac{\mathrm{r}}{2 \mathrm{G}} \mathrm{m}_{1} \mathrm{~m}_{2}\right]^{1 / 2}$
Gravitation

138233 Two bodies of equal masses are some distance apart. If $20 \%$ of mass is transferred from the first body to the second body, then the gravitational force between them

1 Increases by $4 \%$
2 Increase by $14 \%$
3 Decreases by $4 \%$
4 Decreases by $14 \%$
Gravitation

138229 Two identical solid copper spheres of radius $\mathbf{R}$ are placed in contact with each other. The gravitational attraction between them is proportional to:

1 $\mathrm{R}^{2}$
2 $\mathrm{R}^{-2}$
3 $\mathrm{R}^{4}$
4 $\mathrm{R}^{-4}$
5 $\mathrm{R}^{3}$
Gravitation

138230 The distance between the centre of moon and earth is $D$ and mass of earth is 81 times the mass of moon. At what distance from the centre of the earth, the gravitational force will be zero?

1 $\frac{\mathrm{D}}{2}$
2 $\frac{2 \mathrm{D}}{3}$
3 $\frac{4 \mathrm{D}}{3}$
4 $\frac{9 \mathrm{D}}{10}$
Gravitation

138231 Two masses $90 \mathrm{~kg}$ and $160 \mathrm{~kg}$ are separated by a distance of $5 \mathrm{~m}$. The magnitude of intensity of the gravitational field at a point which is at a distance $3 \mathrm{~m}$ from the $90 \mathrm{~kg}$ mass and $4 \mathrm{~m}$ from the $160 \mathrm{~kg}$ mass is (Universal gravitational constant, $G=6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} \mathbf{k g}^{-2}$ ).

1 $94.3 \times 10^{-10} \mathrm{~N} \mathrm{~kg}^{-1}$
2 $9.43 \times 10^{-10} \mathrm{~N} \mathrm{~kg}^{-1}$
3 $9.43 \times 10^{-12} \mathrm{~N} \mathrm{~kg}^{-1}$
4 $94.3 \times 10^{-12} \mathrm{~N} \mathrm{~kg}^{-1}$
Gravitation

138232 Two bodies of masses $m_{1}$ and $m_{2}$ initially at rest at infinite distance apart move towards each other under gravitational force of attraction. Their relative velocity of approach when they are separated by a distance $r$ is $(G=$ universal gravitational constant.)

1 $\left[\frac{2 \mathrm{G}\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right)}{\mathrm{r}}\right]^{1 / 2}$
2 $\left[\frac{2 \mathrm{G}\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)}{\mathrm{r}}\right]^{1 / 2}$
3 $\left[\frac{\mathrm{r}}{2 \mathrm{G}\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right)}\right]^{1 / 2}$
4 $\left[\frac{\mathrm{r}}{2 \mathrm{G}} \mathrm{m}_{1} \mathrm{~m}_{2}\right]^{1 / 2}$
Gravitation

138233 Two bodies of equal masses are some distance apart. If $20 \%$ of mass is transferred from the first body to the second body, then the gravitational force between them

1 Increases by $4 \%$
2 Increase by $14 \%$
3 Decreases by $4 \%$
4 Decreases by $14 \%$
Gravitation

138229 Two identical solid copper spheres of radius $\mathbf{R}$ are placed in contact with each other. The gravitational attraction between them is proportional to:

1 $\mathrm{R}^{2}$
2 $\mathrm{R}^{-2}$
3 $\mathrm{R}^{4}$
4 $\mathrm{R}^{-4}$
5 $\mathrm{R}^{3}$
Gravitation

138230 The distance between the centre of moon and earth is $D$ and mass of earth is 81 times the mass of moon. At what distance from the centre of the earth, the gravitational force will be zero?

1 $\frac{\mathrm{D}}{2}$
2 $\frac{2 \mathrm{D}}{3}$
3 $\frac{4 \mathrm{D}}{3}$
4 $\frac{9 \mathrm{D}}{10}$
Gravitation

138231 Two masses $90 \mathrm{~kg}$ and $160 \mathrm{~kg}$ are separated by a distance of $5 \mathrm{~m}$. The magnitude of intensity of the gravitational field at a point which is at a distance $3 \mathrm{~m}$ from the $90 \mathrm{~kg}$ mass and $4 \mathrm{~m}$ from the $160 \mathrm{~kg}$ mass is (Universal gravitational constant, $G=6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} \mathbf{k g}^{-2}$ ).

1 $94.3 \times 10^{-10} \mathrm{~N} \mathrm{~kg}^{-1}$
2 $9.43 \times 10^{-10} \mathrm{~N} \mathrm{~kg}^{-1}$
3 $9.43 \times 10^{-12} \mathrm{~N} \mathrm{~kg}^{-1}$
4 $94.3 \times 10^{-12} \mathrm{~N} \mathrm{~kg}^{-1}$
Gravitation

138232 Two bodies of masses $m_{1}$ and $m_{2}$ initially at rest at infinite distance apart move towards each other under gravitational force of attraction. Their relative velocity of approach when they are separated by a distance $r$ is $(G=$ universal gravitational constant.)

1 $\left[\frac{2 \mathrm{G}\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right)}{\mathrm{r}}\right]^{1 / 2}$
2 $\left[\frac{2 \mathrm{G}\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)}{\mathrm{r}}\right]^{1 / 2}$
3 $\left[\frac{\mathrm{r}}{2 \mathrm{G}\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right)}\right]^{1 / 2}$
4 $\left[\frac{\mathrm{r}}{2 \mathrm{G}} \mathrm{m}_{1} \mathrm{~m}_{2}\right]^{1 / 2}$
Gravitation

138233 Two bodies of equal masses are some distance apart. If $20 \%$ of mass is transferred from the first body to the second body, then the gravitational force between them

1 Increases by $4 \%$
2 Increase by $14 \%$
3 Decreases by $4 \%$
4 Decreases by $14 \%$
Gravitation

138229 Two identical solid copper spheres of radius $\mathbf{R}$ are placed in contact with each other. The gravitational attraction between them is proportional to:

1 $\mathrm{R}^{2}$
2 $\mathrm{R}^{-2}$
3 $\mathrm{R}^{4}$
4 $\mathrm{R}^{-4}$
5 $\mathrm{R}^{3}$
Gravitation

138230 The distance between the centre of moon and earth is $D$ and mass of earth is 81 times the mass of moon. At what distance from the centre of the earth, the gravitational force will be zero?

1 $\frac{\mathrm{D}}{2}$
2 $\frac{2 \mathrm{D}}{3}$
3 $\frac{4 \mathrm{D}}{3}$
4 $\frac{9 \mathrm{D}}{10}$
Gravitation

138231 Two masses $90 \mathrm{~kg}$ and $160 \mathrm{~kg}$ are separated by a distance of $5 \mathrm{~m}$. The magnitude of intensity of the gravitational field at a point which is at a distance $3 \mathrm{~m}$ from the $90 \mathrm{~kg}$ mass and $4 \mathrm{~m}$ from the $160 \mathrm{~kg}$ mass is (Universal gravitational constant, $G=6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} \mathbf{k g}^{-2}$ ).

1 $94.3 \times 10^{-10} \mathrm{~N} \mathrm{~kg}^{-1}$
2 $9.43 \times 10^{-10} \mathrm{~N} \mathrm{~kg}^{-1}$
3 $9.43 \times 10^{-12} \mathrm{~N} \mathrm{~kg}^{-1}$
4 $94.3 \times 10^{-12} \mathrm{~N} \mathrm{~kg}^{-1}$
Gravitation

138232 Two bodies of masses $m_{1}$ and $m_{2}$ initially at rest at infinite distance apart move towards each other under gravitational force of attraction. Their relative velocity of approach when they are separated by a distance $r$ is $(G=$ universal gravitational constant.)

1 $\left[\frac{2 \mathrm{G}\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right)}{\mathrm{r}}\right]^{1 / 2}$
2 $\left[\frac{2 \mathrm{G}\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)}{\mathrm{r}}\right]^{1 / 2}$
3 $\left[\frac{\mathrm{r}}{2 \mathrm{G}\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right)}\right]^{1 / 2}$
4 $\left[\frac{\mathrm{r}}{2 \mathrm{G}} \mathrm{m}_{1} \mathrm{~m}_{2}\right]^{1 / 2}$
Gravitation

138233 Two bodies of equal masses are some distance apart. If $20 \%$ of mass is transferred from the first body to the second body, then the gravitational force between them

1 Increases by $4 \%$
2 Increase by $14 \%$
3 Decreases by $4 \%$
4 Decreases by $14 \%$