02. Torque, Angular Momentum
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Rotational Motion

149961 A solid sphere of radius \(R\) makes a perfect rolling down on a plane which is inclined to the horizontal axis at an angle \(\theta\). If the radius of gyration is \(\mathbf{k}\), then its acceleration is

1 \(\frac{g \sin \theta}{\left(1+\frac{k^{2}}{R^{2}}\right)}\)
2 \(\frac{\mathrm{g} \sin \theta}{\left(\mathrm{R}^{2}+\mathrm{k}^{2}\right)}\)
3 \(\frac{\mathrm{g} \sin \theta}{2\left(\mathrm{R}^{2}+\mathrm{k}^{2}\right)}\)
4 \(\frac{\mathrm{g} \sin \theta}{2\left(1+\frac{\mathrm{k}^{2}}{\mathrm{R}^{2}}\right)}\)
Rotational Motion

149962 The moment of the force, \(\vec{F}=4 \hat{i}+5 \hat{j}-6 \hat{k}\) at \((2,0,-3\), about the point \((2,-2,-2\), is given by

1 \(-7 \hat{\mathrm{i}}-8 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}\)
2 \(-4 \hat{\mathrm{i}}-\hat{\mathrm{j}}-8 \hat{\mathrm{k}}\)
3 \(-8 \hat{i}-4 \hat{j}-7 \hat{k}\)
4 \(-7 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-8 \hat{\mathrm{k}}\)
Rotational Motion

149963 The minimum and maximum distance of planet from sun is \(r_{\text {min }}\) and \(r_{\text {max }}\). If velocity at \(r_{\text {max }}\) is \(V_{0}\) then find velocity at \(r_{\text {min }}\).

1 \(\frac{V_{0} r_{\max }}{r_{\min }}\)
2 \(\frac{2 \mathrm{~V}_{0} \mathrm{r}_{\min }}{\mathrm{r}_{\max }}\)
3 \(\frac{3 \mathrm{~V}_{0} \mathrm{r}_{\min }}{\mathrm{r}_{\max }}\)
4 \(\frac{2 \mathrm{~V}_{0} \mathrm{r}_{\max }}{\mathrm{r}_{\min }}\)
Rotational Motion

149964 A Light rope is wound around a hollow cylinder of mass \(4 \mathrm{~kg}\) and radius \(40 \mathrm{~cm}\). If the rope is pulled with a force of \(40 \mathrm{~N}\), its angular acceleration is

1 \(0.40 \mathrm{rads}^{-2}\)
2 \(0.25 \mathrm{rads}^{-2}\)
3 \(25 \mathrm{rads}^{-2}\)
4 \(40 \mathrm{rads}^{-2}\)
Rotational Motion

149961 A solid sphere of radius \(R\) makes a perfect rolling down on a plane which is inclined to the horizontal axis at an angle \(\theta\). If the radius of gyration is \(\mathbf{k}\), then its acceleration is

1 \(\frac{g \sin \theta}{\left(1+\frac{k^{2}}{R^{2}}\right)}\)
2 \(\frac{\mathrm{g} \sin \theta}{\left(\mathrm{R}^{2}+\mathrm{k}^{2}\right)}\)
3 \(\frac{\mathrm{g} \sin \theta}{2\left(\mathrm{R}^{2}+\mathrm{k}^{2}\right)}\)
4 \(\frac{\mathrm{g} \sin \theta}{2\left(1+\frac{\mathrm{k}^{2}}{\mathrm{R}^{2}}\right)}\)
Rotational Motion

149962 The moment of the force, \(\vec{F}=4 \hat{i}+5 \hat{j}-6 \hat{k}\) at \((2,0,-3\), about the point \((2,-2,-2\), is given by

1 \(-7 \hat{\mathrm{i}}-8 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}\)
2 \(-4 \hat{\mathrm{i}}-\hat{\mathrm{j}}-8 \hat{\mathrm{k}}\)
3 \(-8 \hat{i}-4 \hat{j}-7 \hat{k}\)
4 \(-7 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-8 \hat{\mathrm{k}}\)
Rotational Motion

149963 The minimum and maximum distance of planet from sun is \(r_{\text {min }}\) and \(r_{\text {max }}\). If velocity at \(r_{\text {max }}\) is \(V_{0}\) then find velocity at \(r_{\text {min }}\).

1 \(\frac{V_{0} r_{\max }}{r_{\min }}\)
2 \(\frac{2 \mathrm{~V}_{0} \mathrm{r}_{\min }}{\mathrm{r}_{\max }}\)
3 \(\frac{3 \mathrm{~V}_{0} \mathrm{r}_{\min }}{\mathrm{r}_{\max }}\)
4 \(\frac{2 \mathrm{~V}_{0} \mathrm{r}_{\max }}{\mathrm{r}_{\min }}\)
Rotational Motion

149964 A Light rope is wound around a hollow cylinder of mass \(4 \mathrm{~kg}\) and radius \(40 \mathrm{~cm}\). If the rope is pulled with a force of \(40 \mathrm{~N}\), its angular acceleration is

1 \(0.40 \mathrm{rads}^{-2}\)
2 \(0.25 \mathrm{rads}^{-2}\)
3 \(25 \mathrm{rads}^{-2}\)
4 \(40 \mathrm{rads}^{-2}\)
Rotational Motion

149961 A solid sphere of radius \(R\) makes a perfect rolling down on a plane which is inclined to the horizontal axis at an angle \(\theta\). If the radius of gyration is \(\mathbf{k}\), then its acceleration is

1 \(\frac{g \sin \theta}{\left(1+\frac{k^{2}}{R^{2}}\right)}\)
2 \(\frac{\mathrm{g} \sin \theta}{\left(\mathrm{R}^{2}+\mathrm{k}^{2}\right)}\)
3 \(\frac{\mathrm{g} \sin \theta}{2\left(\mathrm{R}^{2}+\mathrm{k}^{2}\right)}\)
4 \(\frac{\mathrm{g} \sin \theta}{2\left(1+\frac{\mathrm{k}^{2}}{\mathrm{R}^{2}}\right)}\)
Rotational Motion

149962 The moment of the force, \(\vec{F}=4 \hat{i}+5 \hat{j}-6 \hat{k}\) at \((2,0,-3\), about the point \((2,-2,-2\), is given by

1 \(-7 \hat{\mathrm{i}}-8 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}\)
2 \(-4 \hat{\mathrm{i}}-\hat{\mathrm{j}}-8 \hat{\mathrm{k}}\)
3 \(-8 \hat{i}-4 \hat{j}-7 \hat{k}\)
4 \(-7 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-8 \hat{\mathrm{k}}\)
Rotational Motion

149963 The minimum and maximum distance of planet from sun is \(r_{\text {min }}\) and \(r_{\text {max }}\). If velocity at \(r_{\text {max }}\) is \(V_{0}\) then find velocity at \(r_{\text {min }}\).

1 \(\frac{V_{0} r_{\max }}{r_{\min }}\)
2 \(\frac{2 \mathrm{~V}_{0} \mathrm{r}_{\min }}{\mathrm{r}_{\max }}\)
3 \(\frac{3 \mathrm{~V}_{0} \mathrm{r}_{\min }}{\mathrm{r}_{\max }}\)
4 \(\frac{2 \mathrm{~V}_{0} \mathrm{r}_{\max }}{\mathrm{r}_{\min }}\)
Rotational Motion

149964 A Light rope is wound around a hollow cylinder of mass \(4 \mathrm{~kg}\) and radius \(40 \mathrm{~cm}\). If the rope is pulled with a force of \(40 \mathrm{~N}\), its angular acceleration is

1 \(0.40 \mathrm{rads}^{-2}\)
2 \(0.25 \mathrm{rads}^{-2}\)
3 \(25 \mathrm{rads}^{-2}\)
4 \(40 \mathrm{rads}^{-2}\)
Rotational Motion

149961 A solid sphere of radius \(R\) makes a perfect rolling down on a plane which is inclined to the horizontal axis at an angle \(\theta\). If the radius of gyration is \(\mathbf{k}\), then its acceleration is

1 \(\frac{g \sin \theta}{\left(1+\frac{k^{2}}{R^{2}}\right)}\)
2 \(\frac{\mathrm{g} \sin \theta}{\left(\mathrm{R}^{2}+\mathrm{k}^{2}\right)}\)
3 \(\frac{\mathrm{g} \sin \theta}{2\left(\mathrm{R}^{2}+\mathrm{k}^{2}\right)}\)
4 \(\frac{\mathrm{g} \sin \theta}{2\left(1+\frac{\mathrm{k}^{2}}{\mathrm{R}^{2}}\right)}\)
Rotational Motion

149962 The moment of the force, \(\vec{F}=4 \hat{i}+5 \hat{j}-6 \hat{k}\) at \((2,0,-3\), about the point \((2,-2,-2\), is given by

1 \(-7 \hat{\mathrm{i}}-8 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}\)
2 \(-4 \hat{\mathrm{i}}-\hat{\mathrm{j}}-8 \hat{\mathrm{k}}\)
3 \(-8 \hat{i}-4 \hat{j}-7 \hat{k}\)
4 \(-7 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-8 \hat{\mathrm{k}}\)
Rotational Motion

149963 The minimum and maximum distance of planet from sun is \(r_{\text {min }}\) and \(r_{\text {max }}\). If velocity at \(r_{\text {max }}\) is \(V_{0}\) then find velocity at \(r_{\text {min }}\).

1 \(\frac{V_{0} r_{\max }}{r_{\min }}\)
2 \(\frac{2 \mathrm{~V}_{0} \mathrm{r}_{\min }}{\mathrm{r}_{\max }}\)
3 \(\frac{3 \mathrm{~V}_{0} \mathrm{r}_{\min }}{\mathrm{r}_{\max }}\)
4 \(\frac{2 \mathrm{~V}_{0} \mathrm{r}_{\max }}{\mathrm{r}_{\min }}\)
Rotational Motion

149964 A Light rope is wound around a hollow cylinder of mass \(4 \mathrm{~kg}\) and radius \(40 \mathrm{~cm}\). If the rope is pulled with a force of \(40 \mathrm{~N}\), its angular acceleration is

1 \(0.40 \mathrm{rads}^{-2}\)
2 \(0.25 \mathrm{rads}^{-2}\)
3 \(25 \mathrm{rads}^{-2}\)
4 \(40 \mathrm{rads}^{-2}\)