02. Torque, Angular Momentum
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Rotational Motion

149937 When the torque acting on a system is zero, which of the following remains constant?

1 linear momentum
2 angular momentum
3 linear impulse
4 linear velocity
Rotational Motion

149938 The moment of inertia of a flywheel making 300 revolutions per minute is \(0.3 \mathrm{~kg} \mathrm{~m}^{2}\). Find the torque required to bring it to rest in 20 seconds.

1 47.1 N.m
2 \(-47.1 \mathrm{~N} . \mathrm{m}\)
3 -0.471 N.m
4 \(0.471 \mathrm{~N} . \mathrm{m}\)
Rotational Motion

149939 A force of \((7 \hat{i}+3 \hat{j}-5 \hat{k}) N\) acts on a particle whose position vector is \(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}) \mathbf{m}\). Find the torque experienced by the particle about the origin in \(\mathbf{N}-\mathbf{m}\).

1 \(2 \hat{i}+12 \hat{j}+10 \hat{k}\)
2 \(3 \hat{i}+10 \hat{j}+12 \hat{k}\)
3 \(10 \hat{i}+12 \hat{j}+2 \hat{k}\)
4 \(12 \hat{i}+10 \hat{j}+2 \hat{k}\)
Rotational Motion

149941 A constant torque of \(200 \mathrm{~N}-\mathrm{m}\) turns a flywheel, which is at rest, about an axis through its centre and perpendicular to its plane. If its moment of inertia is \(50 \mathrm{~kg}-\mathrm{m}^{2}\), then in 4 second, what will be change in its angular momentum?

1 \(200 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}\)
2 \(800 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}\)
3 \(20 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}\)
4 \(40 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}\)
Rotational Motion

149937 When the torque acting on a system is zero, which of the following remains constant?

1 linear momentum
2 angular momentum
3 linear impulse
4 linear velocity
Rotational Motion

149938 The moment of inertia of a flywheel making 300 revolutions per minute is \(0.3 \mathrm{~kg} \mathrm{~m}^{2}\). Find the torque required to bring it to rest in 20 seconds.

1 47.1 N.m
2 \(-47.1 \mathrm{~N} . \mathrm{m}\)
3 -0.471 N.m
4 \(0.471 \mathrm{~N} . \mathrm{m}\)
Rotational Motion

149939 A force of \((7 \hat{i}+3 \hat{j}-5 \hat{k}) N\) acts on a particle whose position vector is \(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}) \mathbf{m}\). Find the torque experienced by the particle about the origin in \(\mathbf{N}-\mathbf{m}\).

1 \(2 \hat{i}+12 \hat{j}+10 \hat{k}\)
2 \(3 \hat{i}+10 \hat{j}+12 \hat{k}\)
3 \(10 \hat{i}+12 \hat{j}+2 \hat{k}\)
4 \(12 \hat{i}+10 \hat{j}+2 \hat{k}\)
Rotational Motion

149941 A constant torque of \(200 \mathrm{~N}-\mathrm{m}\) turns a flywheel, which is at rest, about an axis through its centre and perpendicular to its plane. If its moment of inertia is \(50 \mathrm{~kg}-\mathrm{m}^{2}\), then in 4 second, what will be change in its angular momentum?

1 \(200 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}\)
2 \(800 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}\)
3 \(20 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}\)
4 \(40 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}\)
Rotational Motion

149937 When the torque acting on a system is zero, which of the following remains constant?

1 linear momentum
2 angular momentum
3 linear impulse
4 linear velocity
Rotational Motion

149938 The moment of inertia of a flywheel making 300 revolutions per minute is \(0.3 \mathrm{~kg} \mathrm{~m}^{2}\). Find the torque required to bring it to rest in 20 seconds.

1 47.1 N.m
2 \(-47.1 \mathrm{~N} . \mathrm{m}\)
3 -0.471 N.m
4 \(0.471 \mathrm{~N} . \mathrm{m}\)
Rotational Motion

149939 A force of \((7 \hat{i}+3 \hat{j}-5 \hat{k}) N\) acts on a particle whose position vector is \(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}) \mathbf{m}\). Find the torque experienced by the particle about the origin in \(\mathbf{N}-\mathbf{m}\).

1 \(2 \hat{i}+12 \hat{j}+10 \hat{k}\)
2 \(3 \hat{i}+10 \hat{j}+12 \hat{k}\)
3 \(10 \hat{i}+12 \hat{j}+2 \hat{k}\)
4 \(12 \hat{i}+10 \hat{j}+2 \hat{k}\)
Rotational Motion

149941 A constant torque of \(200 \mathrm{~N}-\mathrm{m}\) turns a flywheel, which is at rest, about an axis through its centre and perpendicular to its plane. If its moment of inertia is \(50 \mathrm{~kg}-\mathrm{m}^{2}\), then in 4 second, what will be change in its angular momentum?

1 \(200 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}\)
2 \(800 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}\)
3 \(20 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}\)
4 \(40 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Rotational Motion

149937 When the torque acting on a system is zero, which of the following remains constant?

1 linear momentum
2 angular momentum
3 linear impulse
4 linear velocity
Rotational Motion

149938 The moment of inertia of a flywheel making 300 revolutions per minute is \(0.3 \mathrm{~kg} \mathrm{~m}^{2}\). Find the torque required to bring it to rest in 20 seconds.

1 47.1 N.m
2 \(-47.1 \mathrm{~N} . \mathrm{m}\)
3 -0.471 N.m
4 \(0.471 \mathrm{~N} . \mathrm{m}\)
Rotational Motion

149939 A force of \((7 \hat{i}+3 \hat{j}-5 \hat{k}) N\) acts on a particle whose position vector is \(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}) \mathbf{m}\). Find the torque experienced by the particle about the origin in \(\mathbf{N}-\mathbf{m}\).

1 \(2 \hat{i}+12 \hat{j}+10 \hat{k}\)
2 \(3 \hat{i}+10 \hat{j}+12 \hat{k}\)
3 \(10 \hat{i}+12 \hat{j}+2 \hat{k}\)
4 \(12 \hat{i}+10 \hat{j}+2 \hat{k}\)
Rotational Motion

149941 A constant torque of \(200 \mathrm{~N}-\mathrm{m}\) turns a flywheel, which is at rest, about an axis through its centre and perpendicular to its plane. If its moment of inertia is \(50 \mathrm{~kg}-\mathrm{m}^{2}\), then in 4 second, what will be change in its angular momentum?

1 \(200 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}\)
2 \(800 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}\)
3 \(20 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}\)
4 \(40 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}\)