01. Angular Displacement, Velocity and Acceleration
Rotational Motion

149821 A particle moves along a circle of radius \(\frac{20}{\pi} \mathrm{m}\) with constant tangential acceleration. If the velocity of the particle is \(80 \mathrm{~m} \mathrm{~s}^{-1}\) at the end of the second revolution after motion has begun, the tangential acceleration is

1 \(640 \pi \mathrm{m} \mathrm{s}^{-2}\)
2 \(140 \pi \mathrm{m} \mathrm{s}^{-2}\)
3 \(40 \pi \mathrm{m} \mathrm{s}^{-2}\)
4 \(40 \mathrm{~m} \mathrm{~s}^{-2}\)
Rotational Motion

149822 A uniform rod of length \(l\) and density \(\rho\) is revolving about a vertical axis passing through its one end. If \(\omega\) is the angular velocity of the rod then the centrifugal force per unit area of the rod is

1 \(\frac{\rho \omega^{2} l^{2}}{4}\)
2 \(\frac{\rho \omega^{2} l^{2}}{12}\)
3 \(\frac{\rho \omega^{2} l^{2}}{2}\)
4 \(\frac{\rho \omega^{2} l^{2}}{8}\)
Rotational Motion

149824 An elevator is going up with an acceleration 2 \(\mathrm{m} / \mathrm{s}^{2}\). If radius of the wheel attached to the elevator is \(0.1 \mathrm{~m}\), then find out number of revolutions in \(\mathbf{t}=10 \mathrm{~s}\).

1 129
2 139
3 159
4 179
Rotational Motion

149825 Consider a wheel rotating around a fixed axis. If the rotation angle \(\theta\) varies with time as \(\theta=\) \(\mathrm{at}^{2}\), then the total acceleration of a point \(A\) on the rim of the wheel is ( \(\mathrm{v}\) being the tangential velocity)

1 \(\frac{\mathrm{v}}{\mathrm{t}} \sqrt{1+4 \mathrm{a}^{2} \mathrm{t}^{4}}\)
2 \(\frac{\mathrm{v}}{\mathrm{t}}\)
3 \(\frac{\mathrm{v}}{\mathrm{t}}\left(1+4 \mathrm{a}^{2} \mathrm{t}^{4}\right)\)
4 \(\sqrt{\left(1+4 \mathrm{a}^{2} \mathrm{t}^{4}\right)}\)
Rotational Motion

149826 The angular speed of second's hand of the clock is

1 \(\frac{\pi}{1800} \operatorname{rad~s}^{-1}\)
2 \(\frac{\pi}{30} \operatorname{rad~s}^{-1}\)
3 \(\frac{\pi}{90} \mathrm{rads}^{-1}\)
4 \(\frac{\pi}{60} \mathrm{rads}^{-1}\)
Rotational Motion

149821 A particle moves along a circle of radius \(\frac{20}{\pi} \mathrm{m}\) with constant tangential acceleration. If the velocity of the particle is \(80 \mathrm{~m} \mathrm{~s}^{-1}\) at the end of the second revolution after motion has begun, the tangential acceleration is

1 \(640 \pi \mathrm{m} \mathrm{s}^{-2}\)
2 \(140 \pi \mathrm{m} \mathrm{s}^{-2}\)
3 \(40 \pi \mathrm{m} \mathrm{s}^{-2}\)
4 \(40 \mathrm{~m} \mathrm{~s}^{-2}\)
Rotational Motion

149822 A uniform rod of length \(l\) and density \(\rho\) is revolving about a vertical axis passing through its one end. If \(\omega\) is the angular velocity of the rod then the centrifugal force per unit area of the rod is

1 \(\frac{\rho \omega^{2} l^{2}}{4}\)
2 \(\frac{\rho \omega^{2} l^{2}}{12}\)
3 \(\frac{\rho \omega^{2} l^{2}}{2}\)
4 \(\frac{\rho \omega^{2} l^{2}}{8}\)
Rotational Motion

149824 An elevator is going up with an acceleration 2 \(\mathrm{m} / \mathrm{s}^{2}\). If radius of the wheel attached to the elevator is \(0.1 \mathrm{~m}\), then find out number of revolutions in \(\mathbf{t}=10 \mathrm{~s}\).

1 129
2 139
3 159
4 179
Rotational Motion

149825 Consider a wheel rotating around a fixed axis. If the rotation angle \(\theta\) varies with time as \(\theta=\) \(\mathrm{at}^{2}\), then the total acceleration of a point \(A\) on the rim of the wheel is ( \(\mathrm{v}\) being the tangential velocity)

1 \(\frac{\mathrm{v}}{\mathrm{t}} \sqrt{1+4 \mathrm{a}^{2} \mathrm{t}^{4}}\)
2 \(\frac{\mathrm{v}}{\mathrm{t}}\)
3 \(\frac{\mathrm{v}}{\mathrm{t}}\left(1+4 \mathrm{a}^{2} \mathrm{t}^{4}\right)\)
4 \(\sqrt{\left(1+4 \mathrm{a}^{2} \mathrm{t}^{4}\right)}\)
Rotational Motion

149826 The angular speed of second's hand of the clock is

1 \(\frac{\pi}{1800} \operatorname{rad~s}^{-1}\)
2 \(\frac{\pi}{30} \operatorname{rad~s}^{-1}\)
3 \(\frac{\pi}{90} \mathrm{rads}^{-1}\)
4 \(\frac{\pi}{60} \mathrm{rads}^{-1}\)
Rotational Motion

149821 A particle moves along a circle of radius \(\frac{20}{\pi} \mathrm{m}\) with constant tangential acceleration. If the velocity of the particle is \(80 \mathrm{~m} \mathrm{~s}^{-1}\) at the end of the second revolution after motion has begun, the tangential acceleration is

1 \(640 \pi \mathrm{m} \mathrm{s}^{-2}\)
2 \(140 \pi \mathrm{m} \mathrm{s}^{-2}\)
3 \(40 \pi \mathrm{m} \mathrm{s}^{-2}\)
4 \(40 \mathrm{~m} \mathrm{~s}^{-2}\)
Rotational Motion

149822 A uniform rod of length \(l\) and density \(\rho\) is revolving about a vertical axis passing through its one end. If \(\omega\) is the angular velocity of the rod then the centrifugal force per unit area of the rod is

1 \(\frac{\rho \omega^{2} l^{2}}{4}\)
2 \(\frac{\rho \omega^{2} l^{2}}{12}\)
3 \(\frac{\rho \omega^{2} l^{2}}{2}\)
4 \(\frac{\rho \omega^{2} l^{2}}{8}\)
Rotational Motion

149824 An elevator is going up with an acceleration 2 \(\mathrm{m} / \mathrm{s}^{2}\). If radius of the wheel attached to the elevator is \(0.1 \mathrm{~m}\), then find out number of revolutions in \(\mathbf{t}=10 \mathrm{~s}\).

1 129
2 139
3 159
4 179
Rotational Motion

149825 Consider a wheel rotating around a fixed axis. If the rotation angle \(\theta\) varies with time as \(\theta=\) \(\mathrm{at}^{2}\), then the total acceleration of a point \(A\) on the rim of the wheel is ( \(\mathrm{v}\) being the tangential velocity)

1 \(\frac{\mathrm{v}}{\mathrm{t}} \sqrt{1+4 \mathrm{a}^{2} \mathrm{t}^{4}}\)
2 \(\frac{\mathrm{v}}{\mathrm{t}}\)
3 \(\frac{\mathrm{v}}{\mathrm{t}}\left(1+4 \mathrm{a}^{2} \mathrm{t}^{4}\right)\)
4 \(\sqrt{\left(1+4 \mathrm{a}^{2} \mathrm{t}^{4}\right)}\)
Rotational Motion

149826 The angular speed of second's hand of the clock is

1 \(\frac{\pi}{1800} \operatorname{rad~s}^{-1}\)
2 \(\frac{\pi}{30} \operatorname{rad~s}^{-1}\)
3 \(\frac{\pi}{90} \mathrm{rads}^{-1}\)
4 \(\frac{\pi}{60} \mathrm{rads}^{-1}\)
Rotational Motion

149821 A particle moves along a circle of radius \(\frac{20}{\pi} \mathrm{m}\) with constant tangential acceleration. If the velocity of the particle is \(80 \mathrm{~m} \mathrm{~s}^{-1}\) at the end of the second revolution after motion has begun, the tangential acceleration is

1 \(640 \pi \mathrm{m} \mathrm{s}^{-2}\)
2 \(140 \pi \mathrm{m} \mathrm{s}^{-2}\)
3 \(40 \pi \mathrm{m} \mathrm{s}^{-2}\)
4 \(40 \mathrm{~m} \mathrm{~s}^{-2}\)
Rotational Motion

149822 A uniform rod of length \(l\) and density \(\rho\) is revolving about a vertical axis passing through its one end. If \(\omega\) is the angular velocity of the rod then the centrifugal force per unit area of the rod is

1 \(\frac{\rho \omega^{2} l^{2}}{4}\)
2 \(\frac{\rho \omega^{2} l^{2}}{12}\)
3 \(\frac{\rho \omega^{2} l^{2}}{2}\)
4 \(\frac{\rho \omega^{2} l^{2}}{8}\)
Rotational Motion

149824 An elevator is going up with an acceleration 2 \(\mathrm{m} / \mathrm{s}^{2}\). If radius of the wheel attached to the elevator is \(0.1 \mathrm{~m}\), then find out number of revolutions in \(\mathbf{t}=10 \mathrm{~s}\).

1 129
2 139
3 159
4 179
Rotational Motion

149825 Consider a wheel rotating around a fixed axis. If the rotation angle \(\theta\) varies with time as \(\theta=\) \(\mathrm{at}^{2}\), then the total acceleration of a point \(A\) on the rim of the wheel is ( \(\mathrm{v}\) being the tangential velocity)

1 \(\frac{\mathrm{v}}{\mathrm{t}} \sqrt{1+4 \mathrm{a}^{2} \mathrm{t}^{4}}\)
2 \(\frac{\mathrm{v}}{\mathrm{t}}\)
3 \(\frac{\mathrm{v}}{\mathrm{t}}\left(1+4 \mathrm{a}^{2} \mathrm{t}^{4}\right)\)
4 \(\sqrt{\left(1+4 \mathrm{a}^{2} \mathrm{t}^{4}\right)}\)
Rotational Motion

149826 The angular speed of second's hand of the clock is

1 \(\frac{\pi}{1800} \operatorname{rad~s}^{-1}\)
2 \(\frac{\pi}{30} \operatorname{rad~s}^{-1}\)
3 \(\frac{\pi}{90} \mathrm{rads}^{-1}\)
4 \(\frac{\pi}{60} \mathrm{rads}^{-1}\)
Rotational Motion

149821 A particle moves along a circle of radius \(\frac{20}{\pi} \mathrm{m}\) with constant tangential acceleration. If the velocity of the particle is \(80 \mathrm{~m} \mathrm{~s}^{-1}\) at the end of the second revolution after motion has begun, the tangential acceleration is

1 \(640 \pi \mathrm{m} \mathrm{s}^{-2}\)
2 \(140 \pi \mathrm{m} \mathrm{s}^{-2}\)
3 \(40 \pi \mathrm{m} \mathrm{s}^{-2}\)
4 \(40 \mathrm{~m} \mathrm{~s}^{-2}\)
Rotational Motion

149822 A uniform rod of length \(l\) and density \(\rho\) is revolving about a vertical axis passing through its one end. If \(\omega\) is the angular velocity of the rod then the centrifugal force per unit area of the rod is

1 \(\frac{\rho \omega^{2} l^{2}}{4}\)
2 \(\frac{\rho \omega^{2} l^{2}}{12}\)
3 \(\frac{\rho \omega^{2} l^{2}}{2}\)
4 \(\frac{\rho \omega^{2} l^{2}}{8}\)
Rotational Motion

149824 An elevator is going up with an acceleration 2 \(\mathrm{m} / \mathrm{s}^{2}\). If radius of the wheel attached to the elevator is \(0.1 \mathrm{~m}\), then find out number of revolutions in \(\mathbf{t}=10 \mathrm{~s}\).

1 129
2 139
3 159
4 179
Rotational Motion

149825 Consider a wheel rotating around a fixed axis. If the rotation angle \(\theta\) varies with time as \(\theta=\) \(\mathrm{at}^{2}\), then the total acceleration of a point \(A\) on the rim of the wheel is ( \(\mathrm{v}\) being the tangential velocity)

1 \(\frac{\mathrm{v}}{\mathrm{t}} \sqrt{1+4 \mathrm{a}^{2} \mathrm{t}^{4}}\)
2 \(\frac{\mathrm{v}}{\mathrm{t}}\)
3 \(\frac{\mathrm{v}}{\mathrm{t}}\left(1+4 \mathrm{a}^{2} \mathrm{t}^{4}\right)\)
4 \(\sqrt{\left(1+4 \mathrm{a}^{2} \mathrm{t}^{4}\right)}\)
Rotational Motion

149826 The angular speed of second's hand of the clock is

1 \(\frac{\pi}{1800} \operatorname{rad~s}^{-1}\)
2 \(\frac{\pi}{30} \operatorname{rad~s}^{-1}\)
3 \(\frac{\pi}{90} \mathrm{rads}^{-1}\)
4 \(\frac{\pi}{60} \mathrm{rads}^{-1}\)