01. Angular Displacement, Velocity and Acceleration
Rotational Motion

149798 A coin placed on a rotating turn table just slips if it is placed at a distance of \(4 \mathrm{~cm}\) from the centre. If the angular velocity of the turntable is doubled, it will just slip at a distance of

1 \(1 \mathrm{~cm}\)
2 \(2 \mathrm{~cm}\)
3 \(4 \mathrm{~cm}\)
4 \(8 \mathrm{~cm}\)
Rotational Motion

149799 A disc spinning at the rate \(27.5 \mathrm{rad} \mathrm{s}^{-1}\) is slowed at the rate 10 rad \(\mathrm{s}^{-2}\). The time after which it will come to rest is

1 \(2.75 \mathrm{~s}\)
2 \(5.5 \mathrm{~s}\)
3 \(1.25 \mathrm{~s}\)
4 \(3.5 \mathrm{~s}\)
5 \(6.2 \mathrm{~s}\)
Rotational Motion

149800 Assume proton is rotating along a circular path of radius \(1 \mathrm{~m}\) under a centrifugal force of \(4 \times 10^{-12} \mathrm{~N}\). If the mass of proton is \(1.6 \times 10^{-27} \mathrm{~kg}\), then its angular velocity of rotation is

1 \(5 \times 10^{7} \mathrm{rad} / \mathrm{s}\)
2 \(10^{15} \mathrm{rad} / \mathrm{s}\)
3 \(2.5 \times 10^{7} \mathrm{rad} / \mathrm{s}\)
4 \(5 \times 10^{14} \mathrm{rad} / \mathrm{s}\)
Rotational Motion

149801 A wheel starting from rest gains an angular velocity of \(10 \mathrm{rad} / \mathrm{s}\) after uniformly accelerated for \(5 \mathrm{~s}\). The total angle through which it has turned is :

1 \(25 \mathrm{rad}\)
2 \(100 \mathrm{rad}\)
3 \(25 \pi \mathrm{rad}\)
4 \(50 \pi \mathrm{rad}\) and a vertical axis
Rotational Motion

149798 A coin placed on a rotating turn table just slips if it is placed at a distance of \(4 \mathrm{~cm}\) from the centre. If the angular velocity of the turntable is doubled, it will just slip at a distance of

1 \(1 \mathrm{~cm}\)
2 \(2 \mathrm{~cm}\)
3 \(4 \mathrm{~cm}\)
4 \(8 \mathrm{~cm}\)
Rotational Motion

149799 A disc spinning at the rate \(27.5 \mathrm{rad} \mathrm{s}^{-1}\) is slowed at the rate 10 rad \(\mathrm{s}^{-2}\). The time after which it will come to rest is

1 \(2.75 \mathrm{~s}\)
2 \(5.5 \mathrm{~s}\)
3 \(1.25 \mathrm{~s}\)
4 \(3.5 \mathrm{~s}\)
5 \(6.2 \mathrm{~s}\)
Rotational Motion

149800 Assume proton is rotating along a circular path of radius \(1 \mathrm{~m}\) under a centrifugal force of \(4 \times 10^{-12} \mathrm{~N}\). If the mass of proton is \(1.6 \times 10^{-27} \mathrm{~kg}\), then its angular velocity of rotation is

1 \(5 \times 10^{7} \mathrm{rad} / \mathrm{s}\)
2 \(10^{15} \mathrm{rad} / \mathrm{s}\)
3 \(2.5 \times 10^{7} \mathrm{rad} / \mathrm{s}\)
4 \(5 \times 10^{14} \mathrm{rad} / \mathrm{s}\)
Rotational Motion

149801 A wheel starting from rest gains an angular velocity of \(10 \mathrm{rad} / \mathrm{s}\) after uniformly accelerated for \(5 \mathrm{~s}\). The total angle through which it has turned is :

1 \(25 \mathrm{rad}\)
2 \(100 \mathrm{rad}\)
3 \(25 \pi \mathrm{rad}\)
4 \(50 \pi \mathrm{rad}\) and a vertical axis
Rotational Motion

149798 A coin placed on a rotating turn table just slips if it is placed at a distance of \(4 \mathrm{~cm}\) from the centre. If the angular velocity of the turntable is doubled, it will just slip at a distance of

1 \(1 \mathrm{~cm}\)
2 \(2 \mathrm{~cm}\)
3 \(4 \mathrm{~cm}\)
4 \(8 \mathrm{~cm}\)
Rotational Motion

149799 A disc spinning at the rate \(27.5 \mathrm{rad} \mathrm{s}^{-1}\) is slowed at the rate 10 rad \(\mathrm{s}^{-2}\). The time after which it will come to rest is

1 \(2.75 \mathrm{~s}\)
2 \(5.5 \mathrm{~s}\)
3 \(1.25 \mathrm{~s}\)
4 \(3.5 \mathrm{~s}\)
5 \(6.2 \mathrm{~s}\)
Rotational Motion

149800 Assume proton is rotating along a circular path of radius \(1 \mathrm{~m}\) under a centrifugal force of \(4 \times 10^{-12} \mathrm{~N}\). If the mass of proton is \(1.6 \times 10^{-27} \mathrm{~kg}\), then its angular velocity of rotation is

1 \(5 \times 10^{7} \mathrm{rad} / \mathrm{s}\)
2 \(10^{15} \mathrm{rad} / \mathrm{s}\)
3 \(2.5 \times 10^{7} \mathrm{rad} / \mathrm{s}\)
4 \(5 \times 10^{14} \mathrm{rad} / \mathrm{s}\)
Rotational Motion

149801 A wheel starting from rest gains an angular velocity of \(10 \mathrm{rad} / \mathrm{s}\) after uniformly accelerated for \(5 \mathrm{~s}\). The total angle through which it has turned is :

1 \(25 \mathrm{rad}\)
2 \(100 \mathrm{rad}\)
3 \(25 \pi \mathrm{rad}\)
4 \(50 \pi \mathrm{rad}\) and a vertical axis
Rotational Motion

149798 A coin placed on a rotating turn table just slips if it is placed at a distance of \(4 \mathrm{~cm}\) from the centre. If the angular velocity of the turntable is doubled, it will just slip at a distance of

1 \(1 \mathrm{~cm}\)
2 \(2 \mathrm{~cm}\)
3 \(4 \mathrm{~cm}\)
4 \(8 \mathrm{~cm}\)
Rotational Motion

149799 A disc spinning at the rate \(27.5 \mathrm{rad} \mathrm{s}^{-1}\) is slowed at the rate 10 rad \(\mathrm{s}^{-2}\). The time after which it will come to rest is

1 \(2.75 \mathrm{~s}\)
2 \(5.5 \mathrm{~s}\)
3 \(1.25 \mathrm{~s}\)
4 \(3.5 \mathrm{~s}\)
5 \(6.2 \mathrm{~s}\)
Rotational Motion

149800 Assume proton is rotating along a circular path of radius \(1 \mathrm{~m}\) under a centrifugal force of \(4 \times 10^{-12} \mathrm{~N}\). If the mass of proton is \(1.6 \times 10^{-27} \mathrm{~kg}\), then its angular velocity of rotation is

1 \(5 \times 10^{7} \mathrm{rad} / \mathrm{s}\)
2 \(10^{15} \mathrm{rad} / \mathrm{s}\)
3 \(2.5 \times 10^{7} \mathrm{rad} / \mathrm{s}\)
4 \(5 \times 10^{14} \mathrm{rad} / \mathrm{s}\)
Rotational Motion

149801 A wheel starting from rest gains an angular velocity of \(10 \mathrm{rad} / \mathrm{s}\) after uniformly accelerated for \(5 \mathrm{~s}\). The total angle through which it has turned is :

1 \(25 \mathrm{rad}\)
2 \(100 \mathrm{rad}\)
3 \(25 \pi \mathrm{rad}\)
4 \(50 \pi \mathrm{rad}\) and a vertical axis