02. Conservation of Energy and Work Energy Theorem
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Work, Energy and Power

149107 A bullet of mass $m_{1}$ is moving with speed $v_{\text {。 }}$ hits a sand bag of mass $m_{2}$. If the speed of the bullet after passing the sand bag is $\frac{v_{O}}{3}$, then the height $h$ up to which the bag rises is (assume, $g=$ acceleration due to gravity)

1 $\mathrm{h}=\frac{1}{2 \mathrm{~g}}\left(\frac{2 \mathrm{~m}_{1} \mathrm{v}_{\mathrm{o}}}{3 \mathrm{~m}_{2}}\right)^{2}$
2 $\mathrm{h}=\frac{2 \mathrm{~m}_{1} \mathrm{v}_{\mathrm{o}}}{3 \mathrm{~m}_{2}}$
3 $\mathrm{h}=\frac{2}{2 \mathrm{~g}}$
4 $\mathrm{h}=\left(\frac{2 \mathrm{~m}_{1} \mathrm{v}_{\mathrm{o}}}{3 \mathrm{~m}_{2}}\right)^{2}$
Work, Energy and Power

149108 A ball of mass $2 \mathrm{~g}$ released from the top of an inclined plane describes a circular motion of radius $20 \mathrm{~cm}$ in the vertical plane upon reaching the bottom. The minimum height of the inclined plane is

1 $20 \mathrm{~cm}$
2 $10 \mathrm{~cm}$
3 $50 \mathrm{~cm}$
4 $60 \mathrm{~cm}$
Work, Energy and Power

149109 A bullet of mass $25 \mathrm{~g}$ moves horizontally at a speed of $250 \mathrm{~m} / \mathrm{s}$ is fired into a wooden block of mass $1 \mathrm{~kg}$ suspended by a long string. The bullet crosses the block and emerges on the other side. If the centre of the mass of the block rises through a height of $20 \mathrm{~cm}$. The speed of the bullet as it emerges from the block is (take, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $300 \mathrm{~m} / \mathrm{s}$
2 $220 \mathrm{~m} / \mathrm{s}$
3 $150 \mathrm{~m} / \mathrm{s}$
4 $170 \mathrm{~m} / \mathrm{s}$
Work, Energy and Power

149110 An object of mass $2 \mathrm{~kg}$ is hanging from a rope that is wrapped around a pulley of radius 25 $\mathrm{cm}$. The mass of pulley is $2 \mathrm{~kg}$. Find the acceleration of the object. (Assume, pulley to be a solid disk $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $\frac{2}{3} \mathrm{~m} / \mathrm{s}^{2}$
2 $\frac{4}{3} \mathrm{~m} / \mathrm{s}^{2}$
3 $\frac{10}{3} \mathrm{~m} / \mathrm{s}^{2}$
4 $\frac{20}{3} \mathrm{~m} / \mathrm{s}^{2}$
Work, Energy and Power

149107 A bullet of mass $m_{1}$ is moving with speed $v_{\text {。 }}$ hits a sand bag of mass $m_{2}$. If the speed of the bullet after passing the sand bag is $\frac{v_{O}}{3}$, then the height $h$ up to which the bag rises is (assume, $g=$ acceleration due to gravity)

1 $\mathrm{h}=\frac{1}{2 \mathrm{~g}}\left(\frac{2 \mathrm{~m}_{1} \mathrm{v}_{\mathrm{o}}}{3 \mathrm{~m}_{2}}\right)^{2}$
2 $\mathrm{h}=\frac{2 \mathrm{~m}_{1} \mathrm{v}_{\mathrm{o}}}{3 \mathrm{~m}_{2}}$
3 $\mathrm{h}=\frac{2}{2 \mathrm{~g}}$
4 $\mathrm{h}=\left(\frac{2 \mathrm{~m}_{1} \mathrm{v}_{\mathrm{o}}}{3 \mathrm{~m}_{2}}\right)^{2}$
Work, Energy and Power

149108 A ball of mass $2 \mathrm{~g}$ released from the top of an inclined plane describes a circular motion of radius $20 \mathrm{~cm}$ in the vertical plane upon reaching the bottom. The minimum height of the inclined plane is

1 $20 \mathrm{~cm}$
2 $10 \mathrm{~cm}$
3 $50 \mathrm{~cm}$
4 $60 \mathrm{~cm}$
Work, Energy and Power

149109 A bullet of mass $25 \mathrm{~g}$ moves horizontally at a speed of $250 \mathrm{~m} / \mathrm{s}$ is fired into a wooden block of mass $1 \mathrm{~kg}$ suspended by a long string. The bullet crosses the block and emerges on the other side. If the centre of the mass of the block rises through a height of $20 \mathrm{~cm}$. The speed of the bullet as it emerges from the block is (take, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $300 \mathrm{~m} / \mathrm{s}$
2 $220 \mathrm{~m} / \mathrm{s}$
3 $150 \mathrm{~m} / \mathrm{s}$
4 $170 \mathrm{~m} / \mathrm{s}$
Work, Energy and Power

149110 An object of mass $2 \mathrm{~kg}$ is hanging from a rope that is wrapped around a pulley of radius 25 $\mathrm{cm}$. The mass of pulley is $2 \mathrm{~kg}$. Find the acceleration of the object. (Assume, pulley to be a solid disk $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $\frac{2}{3} \mathrm{~m} / \mathrm{s}^{2}$
2 $\frac{4}{3} \mathrm{~m} / \mathrm{s}^{2}$
3 $\frac{10}{3} \mathrm{~m} / \mathrm{s}^{2}$
4 $\frac{20}{3} \mathrm{~m} / \mathrm{s}^{2}$
Work, Energy and Power

149107 A bullet of mass $m_{1}$ is moving with speed $v_{\text {。 }}$ hits a sand bag of mass $m_{2}$. If the speed of the bullet after passing the sand bag is $\frac{v_{O}}{3}$, then the height $h$ up to which the bag rises is (assume, $g=$ acceleration due to gravity)

1 $\mathrm{h}=\frac{1}{2 \mathrm{~g}}\left(\frac{2 \mathrm{~m}_{1} \mathrm{v}_{\mathrm{o}}}{3 \mathrm{~m}_{2}}\right)^{2}$
2 $\mathrm{h}=\frac{2 \mathrm{~m}_{1} \mathrm{v}_{\mathrm{o}}}{3 \mathrm{~m}_{2}}$
3 $\mathrm{h}=\frac{2}{2 \mathrm{~g}}$
4 $\mathrm{h}=\left(\frac{2 \mathrm{~m}_{1} \mathrm{v}_{\mathrm{o}}}{3 \mathrm{~m}_{2}}\right)^{2}$
Work, Energy and Power

149108 A ball of mass $2 \mathrm{~g}$ released from the top of an inclined plane describes a circular motion of radius $20 \mathrm{~cm}$ in the vertical plane upon reaching the bottom. The minimum height of the inclined plane is

1 $20 \mathrm{~cm}$
2 $10 \mathrm{~cm}$
3 $50 \mathrm{~cm}$
4 $60 \mathrm{~cm}$
Work, Energy and Power

149109 A bullet of mass $25 \mathrm{~g}$ moves horizontally at a speed of $250 \mathrm{~m} / \mathrm{s}$ is fired into a wooden block of mass $1 \mathrm{~kg}$ suspended by a long string. The bullet crosses the block and emerges on the other side. If the centre of the mass of the block rises through a height of $20 \mathrm{~cm}$. The speed of the bullet as it emerges from the block is (take, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $300 \mathrm{~m} / \mathrm{s}$
2 $220 \mathrm{~m} / \mathrm{s}$
3 $150 \mathrm{~m} / \mathrm{s}$
4 $170 \mathrm{~m} / \mathrm{s}$
Work, Energy and Power

149110 An object of mass $2 \mathrm{~kg}$ is hanging from a rope that is wrapped around a pulley of radius 25 $\mathrm{cm}$. The mass of pulley is $2 \mathrm{~kg}$. Find the acceleration of the object. (Assume, pulley to be a solid disk $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $\frac{2}{3} \mathrm{~m} / \mathrm{s}^{2}$
2 $\frac{4}{3} \mathrm{~m} / \mathrm{s}^{2}$
3 $\frac{10}{3} \mathrm{~m} / \mathrm{s}^{2}$
4 $\frac{20}{3} \mathrm{~m} / \mathrm{s}^{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Work, Energy and Power

149107 A bullet of mass $m_{1}$ is moving with speed $v_{\text {。 }}$ hits a sand bag of mass $m_{2}$. If the speed of the bullet after passing the sand bag is $\frac{v_{O}}{3}$, then the height $h$ up to which the bag rises is (assume, $g=$ acceleration due to gravity)

1 $\mathrm{h}=\frac{1}{2 \mathrm{~g}}\left(\frac{2 \mathrm{~m}_{1} \mathrm{v}_{\mathrm{o}}}{3 \mathrm{~m}_{2}}\right)^{2}$
2 $\mathrm{h}=\frac{2 \mathrm{~m}_{1} \mathrm{v}_{\mathrm{o}}}{3 \mathrm{~m}_{2}}$
3 $\mathrm{h}=\frac{2}{2 \mathrm{~g}}$
4 $\mathrm{h}=\left(\frac{2 \mathrm{~m}_{1} \mathrm{v}_{\mathrm{o}}}{3 \mathrm{~m}_{2}}\right)^{2}$
Work, Energy and Power

149108 A ball of mass $2 \mathrm{~g}$ released from the top of an inclined plane describes a circular motion of radius $20 \mathrm{~cm}$ in the vertical plane upon reaching the bottom. The minimum height of the inclined plane is

1 $20 \mathrm{~cm}$
2 $10 \mathrm{~cm}$
3 $50 \mathrm{~cm}$
4 $60 \mathrm{~cm}$
Work, Energy and Power

149109 A bullet of mass $25 \mathrm{~g}$ moves horizontally at a speed of $250 \mathrm{~m} / \mathrm{s}$ is fired into a wooden block of mass $1 \mathrm{~kg}$ suspended by a long string. The bullet crosses the block and emerges on the other side. If the centre of the mass of the block rises through a height of $20 \mathrm{~cm}$. The speed of the bullet as it emerges from the block is (take, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $300 \mathrm{~m} / \mathrm{s}$
2 $220 \mathrm{~m} / \mathrm{s}$
3 $150 \mathrm{~m} / \mathrm{s}$
4 $170 \mathrm{~m} / \mathrm{s}$
Work, Energy and Power

149110 An object of mass $2 \mathrm{~kg}$ is hanging from a rope that is wrapped around a pulley of radius 25 $\mathrm{cm}$. The mass of pulley is $2 \mathrm{~kg}$. Find the acceleration of the object. (Assume, pulley to be a solid disk $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $\frac{2}{3} \mathrm{~m} / \mathrm{s}^{2}$
2 $\frac{4}{3} \mathrm{~m} / \mathrm{s}^{2}$
3 $\frac{10}{3} \mathrm{~m} / \mathrm{s}^{2}$
4 $\frac{20}{3} \mathrm{~m} / \mathrm{s}^{2}$