01. Potential and Kinetic Energy
Work, Energy and Power

149006 A particle moves in a straight line with retardation proportional to its displacement. Its loss of kinetic energy for any displacement $x$ is proportional to

1 $x^{2}$
2 $\mathrm{e}^{\mathrm{x}}$
3 $\mathrm{x}$
4 $\log _{\mathrm{e}} \mathrm{x}$
Work, Energy and Power

149007 A steel ball of mass $5 \mathrm{~g}$ is thrown downward with velocity $10 \mathrm{~m} / \mathrm{s}$ from height $19.5 \mathrm{~m}$. It penetrates sand by $50 \mathrm{~cm}$. The change in mechanical energy will be: $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

1 $1 \mathrm{~J}$
2 $1.25 \mathrm{~J}$
3 $1.5 \mathrm{~J}$
4 $1.75 \mathrm{~J}$
Work, Energy and Power

149008 The potential energy for a force field $\vec{F}$ is given by $U(x, y)=\cos (x+y)$. The force acting on a particle at position given by coordinates $(0, \pi / 4)$ is -

1 $-\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
2 $\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
3 $\left(\frac{1}{2} \hat{\mathrm{i}}+\frac{\sqrt{3}}{2} \hat{\mathrm{j}}\right)$
4 $\left(\frac{1}{2} \hat{\mathrm{i}}-\frac{\sqrt{3}}{2} \hat{\mathrm{j}}\right)$
Work, Energy and Power

149009 A body of mass $5.0 \mathrm{~kg}$ is moving with linear momentum $10 \mathrm{~kg}-\mathrm{ms}^{-1}$. A force of $0.2 \mathrm{~N}$ is applied on the body for $10 \mathrm{~s}$ in the direction of motion of body. The increase in kinetic energy of body will be

1 $2.8 \mathrm{~J}$
2 $3.2 \mathrm{~J}$
3 $3.6 \mathrm{~J}$
4 $4.4 \mathrm{~J}$
Work, Energy and Power

149010 A frictionless track $A, B, C, D, E$ end in a circular loop of radius $R$. A body slides down the track from point $A$ which is at a height $h=$ $5 \mathrm{~cm}$. Maximum value of $R$ for the body to successful complete the loop is

1 $5 \mathrm{~cm}$
2 $\frac{15}{4} \mathrm{~cm}$
3 $\frac{10}{3} \mathrm{~cm}$
4 $2 \mathrm{~cm}$
Work, Energy and Power

149006 A particle moves in a straight line with retardation proportional to its displacement. Its loss of kinetic energy for any displacement $x$ is proportional to

1 $x^{2}$
2 $\mathrm{e}^{\mathrm{x}}$
3 $\mathrm{x}$
4 $\log _{\mathrm{e}} \mathrm{x}$
Work, Energy and Power

149007 A steel ball of mass $5 \mathrm{~g}$ is thrown downward with velocity $10 \mathrm{~m} / \mathrm{s}$ from height $19.5 \mathrm{~m}$. It penetrates sand by $50 \mathrm{~cm}$. The change in mechanical energy will be: $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

1 $1 \mathrm{~J}$
2 $1.25 \mathrm{~J}$
3 $1.5 \mathrm{~J}$
4 $1.75 \mathrm{~J}$
Work, Energy and Power

149008 The potential energy for a force field $\vec{F}$ is given by $U(x, y)=\cos (x+y)$. The force acting on a particle at position given by coordinates $(0, \pi / 4)$ is -

1 $-\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
2 $\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
3 $\left(\frac{1}{2} \hat{\mathrm{i}}+\frac{\sqrt{3}}{2} \hat{\mathrm{j}}\right)$
4 $\left(\frac{1}{2} \hat{\mathrm{i}}-\frac{\sqrt{3}}{2} \hat{\mathrm{j}}\right)$
Work, Energy and Power

149009 A body of mass $5.0 \mathrm{~kg}$ is moving with linear momentum $10 \mathrm{~kg}-\mathrm{ms}^{-1}$. A force of $0.2 \mathrm{~N}$ is applied on the body for $10 \mathrm{~s}$ in the direction of motion of body. The increase in kinetic energy of body will be

1 $2.8 \mathrm{~J}$
2 $3.2 \mathrm{~J}$
3 $3.6 \mathrm{~J}$
4 $4.4 \mathrm{~J}$
Work, Energy and Power

149010 A frictionless track $A, B, C, D, E$ end in a circular loop of radius $R$. A body slides down the track from point $A$ which is at a height $h=$ $5 \mathrm{~cm}$. Maximum value of $R$ for the body to successful complete the loop is

1 $5 \mathrm{~cm}$
2 $\frac{15}{4} \mathrm{~cm}$
3 $\frac{10}{3} \mathrm{~cm}$
4 $2 \mathrm{~cm}$
Work, Energy and Power

149006 A particle moves in a straight line with retardation proportional to its displacement. Its loss of kinetic energy for any displacement $x$ is proportional to

1 $x^{2}$
2 $\mathrm{e}^{\mathrm{x}}$
3 $\mathrm{x}$
4 $\log _{\mathrm{e}} \mathrm{x}$
Work, Energy and Power

149007 A steel ball of mass $5 \mathrm{~g}$ is thrown downward with velocity $10 \mathrm{~m} / \mathrm{s}$ from height $19.5 \mathrm{~m}$. It penetrates sand by $50 \mathrm{~cm}$. The change in mechanical energy will be: $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

1 $1 \mathrm{~J}$
2 $1.25 \mathrm{~J}$
3 $1.5 \mathrm{~J}$
4 $1.75 \mathrm{~J}$
Work, Energy and Power

149008 The potential energy for a force field $\vec{F}$ is given by $U(x, y)=\cos (x+y)$. The force acting on a particle at position given by coordinates $(0, \pi / 4)$ is -

1 $-\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
2 $\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
3 $\left(\frac{1}{2} \hat{\mathrm{i}}+\frac{\sqrt{3}}{2} \hat{\mathrm{j}}\right)$
4 $\left(\frac{1}{2} \hat{\mathrm{i}}-\frac{\sqrt{3}}{2} \hat{\mathrm{j}}\right)$
Work, Energy and Power

149009 A body of mass $5.0 \mathrm{~kg}$ is moving with linear momentum $10 \mathrm{~kg}-\mathrm{ms}^{-1}$. A force of $0.2 \mathrm{~N}$ is applied on the body for $10 \mathrm{~s}$ in the direction of motion of body. The increase in kinetic energy of body will be

1 $2.8 \mathrm{~J}$
2 $3.2 \mathrm{~J}$
3 $3.6 \mathrm{~J}$
4 $4.4 \mathrm{~J}$
Work, Energy and Power

149010 A frictionless track $A, B, C, D, E$ end in a circular loop of radius $R$. A body slides down the track from point $A$ which is at a height $h=$ $5 \mathrm{~cm}$. Maximum value of $R$ for the body to successful complete the loop is

1 $5 \mathrm{~cm}$
2 $\frac{15}{4} \mathrm{~cm}$
3 $\frac{10}{3} \mathrm{~cm}$
4 $2 \mathrm{~cm}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Work, Energy and Power

149006 A particle moves in a straight line with retardation proportional to its displacement. Its loss of kinetic energy for any displacement $x$ is proportional to

1 $x^{2}$
2 $\mathrm{e}^{\mathrm{x}}$
3 $\mathrm{x}$
4 $\log _{\mathrm{e}} \mathrm{x}$
Work, Energy and Power

149007 A steel ball of mass $5 \mathrm{~g}$ is thrown downward with velocity $10 \mathrm{~m} / \mathrm{s}$ from height $19.5 \mathrm{~m}$. It penetrates sand by $50 \mathrm{~cm}$. The change in mechanical energy will be: $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

1 $1 \mathrm{~J}$
2 $1.25 \mathrm{~J}$
3 $1.5 \mathrm{~J}$
4 $1.75 \mathrm{~J}$
Work, Energy and Power

149008 The potential energy for a force field $\vec{F}$ is given by $U(x, y)=\cos (x+y)$. The force acting on a particle at position given by coordinates $(0, \pi / 4)$ is -

1 $-\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
2 $\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
3 $\left(\frac{1}{2} \hat{\mathrm{i}}+\frac{\sqrt{3}}{2} \hat{\mathrm{j}}\right)$
4 $\left(\frac{1}{2} \hat{\mathrm{i}}-\frac{\sqrt{3}}{2} \hat{\mathrm{j}}\right)$
Work, Energy and Power

149009 A body of mass $5.0 \mathrm{~kg}$ is moving with linear momentum $10 \mathrm{~kg}-\mathrm{ms}^{-1}$. A force of $0.2 \mathrm{~N}$ is applied on the body for $10 \mathrm{~s}$ in the direction of motion of body. The increase in kinetic energy of body will be

1 $2.8 \mathrm{~J}$
2 $3.2 \mathrm{~J}$
3 $3.6 \mathrm{~J}$
4 $4.4 \mathrm{~J}$
Work, Energy and Power

149010 A frictionless track $A, B, C, D, E$ end in a circular loop of radius $R$. A body slides down the track from point $A$ which is at a height $h=$ $5 \mathrm{~cm}$. Maximum value of $R$ for the body to successful complete the loop is

1 $5 \mathrm{~cm}$
2 $\frac{15}{4} \mathrm{~cm}$
3 $\frac{10}{3} \mathrm{~cm}$
4 $2 \mathrm{~cm}$
Work, Energy and Power

149006 A particle moves in a straight line with retardation proportional to its displacement. Its loss of kinetic energy for any displacement $x$ is proportional to

1 $x^{2}$
2 $\mathrm{e}^{\mathrm{x}}$
3 $\mathrm{x}$
4 $\log _{\mathrm{e}} \mathrm{x}$
Work, Energy and Power

149007 A steel ball of mass $5 \mathrm{~g}$ is thrown downward with velocity $10 \mathrm{~m} / \mathrm{s}$ from height $19.5 \mathrm{~m}$. It penetrates sand by $50 \mathrm{~cm}$. The change in mechanical energy will be: $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

1 $1 \mathrm{~J}$
2 $1.25 \mathrm{~J}$
3 $1.5 \mathrm{~J}$
4 $1.75 \mathrm{~J}$
Work, Energy and Power

149008 The potential energy for a force field $\vec{F}$ is given by $U(x, y)=\cos (x+y)$. The force acting on a particle at position given by coordinates $(0, \pi / 4)$ is -

1 $-\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
2 $\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
3 $\left(\frac{1}{2} \hat{\mathrm{i}}+\frac{\sqrt{3}}{2} \hat{\mathrm{j}}\right)$
4 $\left(\frac{1}{2} \hat{\mathrm{i}}-\frac{\sqrt{3}}{2} \hat{\mathrm{j}}\right)$
Work, Energy and Power

149009 A body of mass $5.0 \mathrm{~kg}$ is moving with linear momentum $10 \mathrm{~kg}-\mathrm{ms}^{-1}$. A force of $0.2 \mathrm{~N}$ is applied on the body for $10 \mathrm{~s}$ in the direction of motion of body. The increase in kinetic energy of body will be

1 $2.8 \mathrm{~J}$
2 $3.2 \mathrm{~J}$
3 $3.6 \mathrm{~J}$
4 $4.4 \mathrm{~J}$
Work, Energy and Power

149010 A frictionless track $A, B, C, D, E$ end in a circular loop of radius $R$. A body slides down the track from point $A$ which is at a height $h=$ $5 \mathrm{~cm}$. Maximum value of $R$ for the body to successful complete the loop is

1 $5 \mathrm{~cm}$
2 $\frac{15}{4} \mathrm{~cm}$
3 $\frac{10}{3} \mathrm{~cm}$
4 $2 \mathrm{~cm}$