01. Potential and Kinetic Energy
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Work, Energy and Power

148961 The energy required to accelerate a car from $10 \mathrm{~ms}^{-1}$ to $20 \mathrm{~ms}^{-1}$ is times the energy required to accelerate the car from rest to 10 $\mathrm{ms}^{-1}$

1 Equal
2 4 times
3 2 times
4 3 times
Work, Energy and Power

148962 The kinetic energy of an electron which is accelerated through a potential difference of $100 \mathrm{~V}$ will be

1 $6.626 \times 1 \overline{10^{-34} \mathrm{~J}}$
2 $1.16 \times 10^{-4} \mathrm{~J}$
3 $418.6 \mathrm{~J}$
4 $1.6 \times 10^{-17} \mathrm{~J}$
Work, Energy and Power

148963 A tangential force $F$ acts along the rim of a ring of radius $R$ and displaces the ring through an angle $\theta$. The work done by the force is :

1 $\mathrm{FR}^{2} \theta$
2 $\frac{\mathrm{FR}}{\theta}$
3 $\frac{\text { FR } \theta}{2}$
4 $\operatorname{FR} \theta$
Work, Energy and Power

148965 Two object of masses $m_{1}$ and $m_{2}$ posses equal kinetic energies. If $p_{1}$ and $p_{2}$ are their respective momentum, then $p_{1}: p_{2}$ is

1 $\mathrm{m}_{1}: \mathrm{m}_{2}$
2 $\mathrm{m}_{2}: \mathrm{m}_{1}$
3 $\sqrt{\mathrm{m}_{1}}: \sqrt{\mathrm{m}_{2}}$
4 $\mathrm{m}_{1}^{2}: \mathrm{m}_{2}^{2}$
Work, Energy and Power

148961 The energy required to accelerate a car from $10 \mathrm{~ms}^{-1}$ to $20 \mathrm{~ms}^{-1}$ is times the energy required to accelerate the car from rest to 10 $\mathrm{ms}^{-1}$

1 Equal
2 4 times
3 2 times
4 3 times
Work, Energy and Power

148962 The kinetic energy of an electron which is accelerated through a potential difference of $100 \mathrm{~V}$ will be

1 $6.626 \times 1 \overline{10^{-34} \mathrm{~J}}$
2 $1.16 \times 10^{-4} \mathrm{~J}$
3 $418.6 \mathrm{~J}$
4 $1.6 \times 10^{-17} \mathrm{~J}$
Work, Energy and Power

148963 A tangential force $F$ acts along the rim of a ring of radius $R$ and displaces the ring through an angle $\theta$. The work done by the force is :

1 $\mathrm{FR}^{2} \theta$
2 $\frac{\mathrm{FR}}{\theta}$
3 $\frac{\text { FR } \theta}{2}$
4 $\operatorname{FR} \theta$
Work, Energy and Power

148965 Two object of masses $m_{1}$ and $m_{2}$ posses equal kinetic energies. If $p_{1}$ and $p_{2}$ are their respective momentum, then $p_{1}: p_{2}$ is

1 $\mathrm{m}_{1}: \mathrm{m}_{2}$
2 $\mathrm{m}_{2}: \mathrm{m}_{1}$
3 $\sqrt{\mathrm{m}_{1}}: \sqrt{\mathrm{m}_{2}}$
4 $\mathrm{m}_{1}^{2}: \mathrm{m}_{2}^{2}$
Work, Energy and Power

148961 The energy required to accelerate a car from $10 \mathrm{~ms}^{-1}$ to $20 \mathrm{~ms}^{-1}$ is times the energy required to accelerate the car from rest to 10 $\mathrm{ms}^{-1}$

1 Equal
2 4 times
3 2 times
4 3 times
Work, Energy and Power

148962 The kinetic energy of an electron which is accelerated through a potential difference of $100 \mathrm{~V}$ will be

1 $6.626 \times 1 \overline{10^{-34} \mathrm{~J}}$
2 $1.16 \times 10^{-4} \mathrm{~J}$
3 $418.6 \mathrm{~J}$
4 $1.6 \times 10^{-17} \mathrm{~J}$
Work, Energy and Power

148963 A tangential force $F$ acts along the rim of a ring of radius $R$ and displaces the ring through an angle $\theta$. The work done by the force is :

1 $\mathrm{FR}^{2} \theta$
2 $\frac{\mathrm{FR}}{\theta}$
3 $\frac{\text { FR } \theta}{2}$
4 $\operatorname{FR} \theta$
Work, Energy and Power

148965 Two object of masses $m_{1}$ and $m_{2}$ posses equal kinetic energies. If $p_{1}$ and $p_{2}$ are their respective momentum, then $p_{1}: p_{2}$ is

1 $\mathrm{m}_{1}: \mathrm{m}_{2}$
2 $\mathrm{m}_{2}: \mathrm{m}_{1}$
3 $\sqrt{\mathrm{m}_{1}}: \sqrt{\mathrm{m}_{2}}$
4 $\mathrm{m}_{1}^{2}: \mathrm{m}_{2}^{2}$
Work, Energy and Power

148961 The energy required to accelerate a car from $10 \mathrm{~ms}^{-1}$ to $20 \mathrm{~ms}^{-1}$ is times the energy required to accelerate the car from rest to 10 $\mathrm{ms}^{-1}$

1 Equal
2 4 times
3 2 times
4 3 times
Work, Energy and Power

148962 The kinetic energy of an electron which is accelerated through a potential difference of $100 \mathrm{~V}$ will be

1 $6.626 \times 1 \overline{10^{-34} \mathrm{~J}}$
2 $1.16 \times 10^{-4} \mathrm{~J}$
3 $418.6 \mathrm{~J}$
4 $1.6 \times 10^{-17} \mathrm{~J}$
Work, Energy and Power

148963 A tangential force $F$ acts along the rim of a ring of radius $R$ and displaces the ring through an angle $\theta$. The work done by the force is :

1 $\mathrm{FR}^{2} \theta$
2 $\frac{\mathrm{FR}}{\theta}$
3 $\frac{\text { FR } \theta}{2}$
4 $\operatorname{FR} \theta$
Work, Energy and Power

148965 Two object of masses $m_{1}$ and $m_{2}$ posses equal kinetic energies. If $p_{1}$ and $p_{2}$ are their respective momentum, then $p_{1}: p_{2}$ is

1 $\mathrm{m}_{1}: \mathrm{m}_{2}$
2 $\mathrm{m}_{2}: \mathrm{m}_{1}$
3 $\sqrt{\mathrm{m}_{1}}: \sqrt{\mathrm{m}_{2}}$
4 $\mathrm{m}_{1}^{2}: \mathrm{m}_{2}^{2}$