00. Work done by Force and Power
Work, Energy and Power

148814 The displacement of a body of mass $4 \mathrm{~kg}$ varies with time as $s=\left(t^{2}+2 t\right) m$. Now the workdone by all the forces acting on the body during the time interval $t=3 \mathrm{~s}$ and $\mathrm{t}=5 \mathrm{~s}$ is

1 $80 \mathrm{~J}$
2 $320 \mathrm{~J}$
3 $240 \mathrm{~J}$
4 $160 \mathrm{~J}$
Work, Energy and Power

148816 Consider a particle on which constant forces $\vec{F}_{1}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{F}_{2}=4 \hat{i}-5 \hat{j}-2 \hat{k} N$ act together resulting in a displacement from position $\overrightarrow{\mathrm{r}}_{1}=20 \hat{\mathbf{i}}+15 \hat{\mathbf{j}} \mathrm{cm}$ to $\overrightarrow{\mathrm{r}}_{2}=7 \hat{\mathbf{k}} \mathrm{cm}$. The total work done on the particle is

1 $-0.48 \mathrm{~J}$
2 $+0.48 \mathrm{~J}$
3 $-4.5 \mathrm{~J}$
4 $+4.8 \mathrm{~J}$
Work, Energy and Power

148817 A motor pump lifts 6 tonnes of water from a well of depth $25 \mathrm{~m}$ to the first floor of height 35 $\mathrm{m}$ from the ground floor in 20 minutes. The power of the pump (in $\mathrm{kW}$ ) is: $\left[\mathrm{g}=10 \mathrm{~ms}^{-2}\right.$ ]

1 3
2 12
3 1.5
4 6
Work, Energy and Power

148818 Figure shows three forces applied to a trunk that moves leftward by $3 \mathrm{~m}$ over a smooth floor. The force magnitudes are $F_{1}=5 \mathrm{~N}, \mathrm{~F}_{2}=$ $9 \mathrm{~N}$ and $F_{3}=3 \mathrm{~N}$. The net work done on the trunk by the three forces.

1 $1.50 \mathrm{~J}$
2 $2.40 \mathrm{~J}$
3 $3.00 \mathrm{~J}$
4 $6.00 \mathrm{~J}$
Work, Energy and Power

148814 The displacement of a body of mass $4 \mathrm{~kg}$ varies with time as $s=\left(t^{2}+2 t\right) m$. Now the workdone by all the forces acting on the body during the time interval $t=3 \mathrm{~s}$ and $\mathrm{t}=5 \mathrm{~s}$ is

1 $80 \mathrm{~J}$
2 $320 \mathrm{~J}$
3 $240 \mathrm{~J}$
4 $160 \mathrm{~J}$
Work, Energy and Power

148816 Consider a particle on which constant forces $\vec{F}_{1}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{F}_{2}=4 \hat{i}-5 \hat{j}-2 \hat{k} N$ act together resulting in a displacement from position $\overrightarrow{\mathrm{r}}_{1}=20 \hat{\mathbf{i}}+15 \hat{\mathbf{j}} \mathrm{cm}$ to $\overrightarrow{\mathrm{r}}_{2}=7 \hat{\mathbf{k}} \mathrm{cm}$. The total work done on the particle is

1 $-0.48 \mathrm{~J}$
2 $+0.48 \mathrm{~J}$
3 $-4.5 \mathrm{~J}$
4 $+4.8 \mathrm{~J}$
Work, Energy and Power

148817 A motor pump lifts 6 tonnes of water from a well of depth $25 \mathrm{~m}$ to the first floor of height 35 $\mathrm{m}$ from the ground floor in 20 minutes. The power of the pump (in $\mathrm{kW}$ ) is: $\left[\mathrm{g}=10 \mathrm{~ms}^{-2}\right.$ ]

1 3
2 12
3 1.5
4 6
Work, Energy and Power

148818 Figure shows three forces applied to a trunk that moves leftward by $3 \mathrm{~m}$ over a smooth floor. The force magnitudes are $F_{1}=5 \mathrm{~N}, \mathrm{~F}_{2}=$ $9 \mathrm{~N}$ and $F_{3}=3 \mathrm{~N}$. The net work done on the trunk by the three forces.

1 $1.50 \mathrm{~J}$
2 $2.40 \mathrm{~J}$
3 $3.00 \mathrm{~J}$
4 $6.00 \mathrm{~J}$
Work, Energy and Power

148814 The displacement of a body of mass $4 \mathrm{~kg}$ varies with time as $s=\left(t^{2}+2 t\right) m$. Now the workdone by all the forces acting on the body during the time interval $t=3 \mathrm{~s}$ and $\mathrm{t}=5 \mathrm{~s}$ is

1 $80 \mathrm{~J}$
2 $320 \mathrm{~J}$
3 $240 \mathrm{~J}$
4 $160 \mathrm{~J}$
Work, Energy and Power

148816 Consider a particle on which constant forces $\vec{F}_{1}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{F}_{2}=4 \hat{i}-5 \hat{j}-2 \hat{k} N$ act together resulting in a displacement from position $\overrightarrow{\mathrm{r}}_{1}=20 \hat{\mathbf{i}}+15 \hat{\mathbf{j}} \mathrm{cm}$ to $\overrightarrow{\mathrm{r}}_{2}=7 \hat{\mathbf{k}} \mathrm{cm}$. The total work done on the particle is

1 $-0.48 \mathrm{~J}$
2 $+0.48 \mathrm{~J}$
3 $-4.5 \mathrm{~J}$
4 $+4.8 \mathrm{~J}$
Work, Energy and Power

148817 A motor pump lifts 6 tonnes of water from a well of depth $25 \mathrm{~m}$ to the first floor of height 35 $\mathrm{m}$ from the ground floor in 20 minutes. The power of the pump (in $\mathrm{kW}$ ) is: $\left[\mathrm{g}=10 \mathrm{~ms}^{-2}\right.$ ]

1 3
2 12
3 1.5
4 6
Work, Energy and Power

148818 Figure shows three forces applied to a trunk that moves leftward by $3 \mathrm{~m}$ over a smooth floor. The force magnitudes are $F_{1}=5 \mathrm{~N}, \mathrm{~F}_{2}=$ $9 \mathrm{~N}$ and $F_{3}=3 \mathrm{~N}$. The net work done on the trunk by the three forces.

1 $1.50 \mathrm{~J}$
2 $2.40 \mathrm{~J}$
3 $3.00 \mathrm{~J}$
4 $6.00 \mathrm{~J}$
Work, Energy and Power

148814 The displacement of a body of mass $4 \mathrm{~kg}$ varies with time as $s=\left(t^{2}+2 t\right) m$. Now the workdone by all the forces acting on the body during the time interval $t=3 \mathrm{~s}$ and $\mathrm{t}=5 \mathrm{~s}$ is

1 $80 \mathrm{~J}$
2 $320 \mathrm{~J}$
3 $240 \mathrm{~J}$
4 $160 \mathrm{~J}$
Work, Energy and Power

148816 Consider a particle on which constant forces $\vec{F}_{1}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{F}_{2}=4 \hat{i}-5 \hat{j}-2 \hat{k} N$ act together resulting in a displacement from position $\overrightarrow{\mathrm{r}}_{1}=20 \hat{\mathbf{i}}+15 \hat{\mathbf{j}} \mathrm{cm}$ to $\overrightarrow{\mathrm{r}}_{2}=7 \hat{\mathbf{k}} \mathrm{cm}$. The total work done on the particle is

1 $-0.48 \mathrm{~J}$
2 $+0.48 \mathrm{~J}$
3 $-4.5 \mathrm{~J}$
4 $+4.8 \mathrm{~J}$
Work, Energy and Power

148817 A motor pump lifts 6 tonnes of water from a well of depth $25 \mathrm{~m}$ to the first floor of height 35 $\mathrm{m}$ from the ground floor in 20 minutes. The power of the pump (in $\mathrm{kW}$ ) is: $\left[\mathrm{g}=10 \mathrm{~ms}^{-2}\right.$ ]

1 3
2 12
3 1.5
4 6
Work, Energy and Power

148818 Figure shows three forces applied to a trunk that moves leftward by $3 \mathrm{~m}$ over a smooth floor. The force magnitudes are $F_{1}=5 \mathrm{~N}, \mathrm{~F}_{2}=$ $9 \mathrm{~N}$ and $F_{3}=3 \mathrm{~N}$. The net work done on the trunk by the three forces.

1 $1.50 \mathrm{~J}$
2 $2.40 \mathrm{~J}$
3 $3.00 \mathrm{~J}$
4 $6.00 \mathrm{~J}$